Factoring%20trinomials:%20x2%20 %20bx%20 %20c - PowerPoint PPT Presentation

About This Presentation
Title:

Factoring%20trinomials:%20x2%20 %20bx%20 %20c

Description:

Lesson 72 Factoring trinomials: x2 + bx + c – PowerPoint PPT presentation

Number of Views:398
Avg rating:3.0/5.0
Slides: 28
Provided by: studen241
Category:

less

Transcript and Presenter's Notes

Title: Factoring%20trinomials:%20x2%20 %20bx%20 %20c


1
Lesson 72
  • Factoring trinomials x2 bx c

2
Factoring trinomials
  • The polynomial x2 bx c is a trinomial
  • Like numbers, some trinomials can be factored
    into 2 linear factors.

3
Factoring when c is positive
  • Factor x2 9x 18
  • In this trinomial b is 9 and c is 18
  • Because b is positive, it must be the sum of 2
    positive numbers that are factors of c
  • List all factors of c, which is 18
  • 1,18 2,9 3,6
  • Which pair adds up to b , which is 9?
  • 3,6
  • So x2 9x 18 (x3)(x6)

4
practice
  • Factor x2 5x 6
  • x2 8x 15
  • x2 4x 4
  • x2 4x 3
  • x2 7x 12

5
Factoring when c is positive and b is negative
  • Factor x2-5x4
  • List factors of 4 1,4 2,2 -1, -4 -2,-2
  • Which pair adds up to -5 ?
  • -1,-4
  • x2 -5x 4 (x-1)(x-4)

6
practice
  • Factor x2 8x 15
  • x2 -7x 12
  • x2 -5x 6
  • x2 4x 3
  • x2 10x 16

7
Factoring when c is negative
  • Factor x2 3x -10
  • List factors of -10
  • -1,10 -10,1 -2,5 -5,2
  • Which pair adds up to 3?
  • -2,5
  • x2 3x -10 (x-2)(x5)

8
practice
  • Factor x2 7x 8
  • x2 7x 30
  • x2 3x -54
  • x2 5x - 14

9
Factoring with 2 variables
  • x2 5xy 6y2
  • b 5y c 6y2
  • list factors of 6y2
  • 1,6y2 6,y2 2,3y2 3,2y2 y,6y 2y,3y
  • Which pair adds up to 5y
  • 2y, 3y
  • So x2 5xy 6y2 (x2y)(x3y)

10
factor
  • x2 2xy 3y2
  • x2 4xy 4y2
  • x2 -7xy -18y2

11
Rearranging terms before factoring
  • -21-4xx2
  • Write the trinomial in standard form , then
    factor
  • x2 -4x-21
  • list factors of -21, that add up to -4
  • -1,21 1,-21 -3,7 3,-7
  • 3, -7 adds up to -4
  • so x2-4x-21 (x3)(x-7)

12
practice
  • Factor -24 5x x2
  • 3x 10 x2
  • -8 x2 7x

13
Evaluating trinomials
  • Evaluate x25x-14 and its factors
  • for x 3
  • x2 5x -14 (x7)(x-2)
  • (3)2 5(3)-14 (37)(3-2)
  • 9 15-14 (10)(1)
  • 10 10

14
practice
  • Evaluate
  • x2 5x 14 for x 2

15
Lesson 75
  • The pattern used for trinomials is different when
    a is not 1.
  • Factor 2x2 7x 5
  • 2x2 has factors 2x and x so we know
  • (2x )( x )
  • Factors of 5 are 1,5 -1,-5
  • Because the middle term is positive, we can
    eliminate the -1,-5 pair
  • Check each other pair to see if the middle terms
    added equal the middle term in the trinomial
  • (2x 1)(x5) or (2x 5)(x1)
  • 2x2 10xx5 2x22x5x5
  • 2x2 11x 5 2x2 7x 5

16
factor
  • 3x2 13x12
  • 6x2 11x3

17
Factoring when b is negative and c is positive
  • Factor 6x2 - 11x 3
  • factors of 6x2 (x )(6x ) or (2x )(3x )
  • Factors of 3 1,3 or -1,-3
  • Since the middle term is negative, we can
    eliminate 1,3
  • Try (x-1)(6x-3) 6x2-3x-6x36x2-9x3
  • (x-3)(6x-1)6x2-x-18x36x2-19x3
  • (2x-1)(3x-3)6x2-6x-3x36x2-9x3
  • (2x-3)(3x-1)6x2-2x-9x36x2-11x3

18
practice
  • 4x2 -23x 15
  • 10x2-23x12

19
Factoring when c is negative
  • 4x2 4x-3
  • Factors of 4x2 (4x )(x )or(2x )(2x )
  • Factors of -3 1, -3 or -1,3
  • (4x1)(x-3) 4x2-11x-3
  • (4x-3)(x1) 4x2x-3
  • (4x-1)(x3) 4x211x-3
  • (4x3)(x-1) 4x2-x-3
  • (2x1)(2x-3) 4x2-4x-3
  • (2x-1)(2x3)4x24x-3

20
factor
  • 6x28x-8
  • 2x2-3x-20
  • 3x2-11x-4

21
Factoring with 2 variables
  • Factor 2x2-11xy5y2
  • Factors of 2x2 (2x )(x )
  • Factors of 5y2 5y, y or -5y, -y
  • Since the middle sign is negative , we can
    eliminate the 5y,y
  • (2x-5y)(x-y) or (2x-y)(x-5y)
  • 2x2-2xy-5xy5y2 or 2x2-10xy-xy5y2
  • 2x2-7xy5y2 or 2x2-11xy5y2

22
practice
  • Factor 2x2-5xy2y2
  • 6x211xy4y2

23
Rearranging before factoring
  • Trinomials must be in standard form before
    factoring

24
Lesson 79
  • Factoring trinomials by using the GCF

25
Factoring trinomials with positive leading
coefficients
  • Always factor the GCF first, then continue
    factoring as in previous lessons
  • x45x36x2
  • GCF is x2, so
  • x2(x25x6)
  • x2(x3)(x2)

26
Practice
  • Factor
  • 4x3-4x2-80x
  • a53a4-18a3
  • 2m4-16m330m2

27
Factoring with negative lead coefficients
  • It will always be easier to factor a trinomial
    with a positive lead coefficient, so whenever
    possible, factor out a negative if your trinomial
    has a negative lead coefficient.
  • -x2x56 -1(x2-x-56)-1(x-8)(x7)
Write a Comment
User Comments (0)
About PowerShow.com