Sentential Logic - PowerPoint PPT Presentation

1 / 50
About This Presentation
Title:

Sentential Logic

Description:

There are 11 rules: Reiteration, and an introduction and elimination rule for ... Reiteration (R) P P. Conjunction Introduction (&I) P. Q P & Q. Conjunction ... – PowerPoint PPT presentation

Number of Views:25
Avg rating:3.0/5.0
Slides: 51
Provided by: jco555
Category:

less

Transcript and Presenter's Notes

Title: Sentential Logic


1
Sentential Logic
  • Derivations

2
Derivation Rules of SD
  • Last day we started to look at the derivation
    rules of the natural deduction system, SD.
  • There are 11 rules Reiteration, and an
    introduction and elimination rule for each of the
    connectives.

3
Reiteration (R)
  • P
  • gt P

4
Conjunction Introduction (I)
  • P
  • Q
  • gt P Q

5
Conjunction Elimination (E)
  • P Q P Q
  • gt P gt Q

6
Conditional Elimination (ÉE)
  • P É Q
  • P
  • gt Q

7
Example
  • Derive U
  • H É U Assumption
  • S H Assumption
  • H 2 E
  • U 1,3 ÉE

8
Conditional Introduction (ÉI)
  • Conditional Introduction requires the
    introduction of a new mechanism in our derivation
    system subderivation.
  • A subderivation is a derivation which is
    conducted within the main derivation.
  • It is initiated by introducing a new sentence to
    the derivation, one whose position is not
    justified by being derived from lines previous to
    it.

9
Conditional Introduction (ÉI)
  • E.g.
  • main scope line
  • auxiliary assumption
  • P
  • scope line of subderivation

10
Conditional Introduction (ÉI)
  • P
  • Q
  • gt P É Q

11
Examples
  • Derive E v K
  • (Q M) É (E v K) Assumption
  • M (E v C) Assumption
  • Q N Assumption
  • Q 3 E
  • M 2 E
  • Q M 4,5 I
  • E v K 1,6 ÉE

12
Examples
  • Derive J É T
  • J É (S T) Assumption

13
Examples
  • Derive J É T
  • J É (S T) Assumption
  • J Assumption

14
Examples
  • Derive J É T
  • J É (S T) Assumption
  • J Assumption
  • S T 1,2 ÉE
  • T 3 E
  • J É T 2-4 ÉI

15
Examples
  • Derive (S B) É N
  • S É (L N) Assumption

16
Examples
  • Derive (S B) É N
  • S É (L N) Assumption
  • (S B) É N Goal sentence

17
Examples
  • Derive (S B) É N
  • S É (L N) Assumption
  • S B Assumption
  • (S B) É N 2-? ÉI

18
Examples
  • Derive (S B) É N
  • S É (L N) Assumption
  • S B Assumption
  • S 2 E
  • L N 1,3 ÉE
  • N 4 E
  • (S B) É N 2-? ÉI

19
Examples
  • Derive (S B) É N
  • S É (L N) Assumption
  • S B Assumption
  • S 2 E
  • L N 1,2 ÉE
  • N 4 E
  • (S B) É N 2-5 ÉI

20
Negation Introduction (I)
  • Both Negation Introduction and Negation
    Elimination are also known as Reductio Ad
    Absurdum.
  • Reductios work by assuming the negation of the
    sentence that you want to prove, and then showing
    that that assumption is false as it leads to a
    contradiction, and hence the original sentence is
    true.

21
Negation Introduction (I)
  • P
  • Q
  • Q
  • gt P

22
Negation Elimination (E)
  • P
  • Q
  • Q
  • gt P

23
Examples
  • Derive G
  • (G É I) I Assumption
  • G Goal sentence

24
Examples
  • Derive G
  • (G É I) I Assumption
  • G Assumption
  • try to derive a contradiction
  • here
  • G Goal sentence

25
Examples
  • Derive G
  • (G É I) I Assumption
  • G Assumption
  • G É I 1 E
  • I 2,3 ÉE
  • I 1 E
  • G Goal sentence

26
Examples
  • Derive G
  • (G É I) I Assumption
  • G Assumption
  • G É I 1 E
  • I 2,3 ÉE
  • I 1 E
  • G 2-5 I

27
Examples
  • Derive P
  • (P É L) (L É L) Assumption
  • P Goal sentence

28
Examples
  • Derive P
  • (P É L) (L É L) Assumption
  • P Assumption
  • P É L 1 E
  • L 2,3 ÉE
  • L É L 1 E
  • L 4,5 ÉE
  • P Goal sentence

29
Examples
  • Derive P
  • (P É L) (L É L) Assumption
  • P Assumption
  • P É L 1 E
  • L 2,3 ÉE
  • L É L 1 E
  • L 4,5 ÉE
  • P 2-6 E

30
Disjunction Introduction (vI)
  • P P
  • gt P v Q gt Q v P

31
Disjunction Elimination (vE)
  • P v Q
  • gt R

32
Disjunction Elimination (vE)
  • P v Q
  • P
  • R
  • Q
  • R
  • gt R

33
Examples
  • Derive B v (K v G)
  • K Assumption
  • K v G 1 vI
  • B v (K v G) Goal sentence

34
Examples
  • Derive B v (K v G)
  • K Assumption
  • K v G 1 vI
  • B v (K v G) 2 vI

35
Examples
  • Derive H
  • (K v P) É H Assumption
  • P Assumption
  • K v P 2 vI
  • H goal sentence

36
Examples
  • Derive H
  • (K v P) É H Assumption
  • P Assumption
  • K v P 2 vI
  • H 1,3 ÉE

37
Examples
  • Derive X
  • E v X Assumption
  • E É X Assumption
  • X Goal sentence

38
Examples
  • Derive X
  • E v X Assumption
  • E É X Assumption
  • E Assumption
  • X 2,3 ÉE
  • X Assumption
  • X 5 R
  • X goal sentence

39
Examples
  • Derive X
  • E v X Assumption
  • E É X Assumption
  • E Assumption
  • X 2,3 ÉE
  • X Assumption
  • X 5 R
  • X 3-4, 5-6 vE

40
Biconditional Introduction (I)
  • A biconditional could be understood as
  • the conjunction of two conditionals
  • gt P Q

41
Biconditional Introduction (I)
  • i.e.,
  • (P É Q) (Q É P)
  • gt P Q

42
Biconditional Introduction (I)
  • P
  • Q
  • Q
  • P
  • gt P Q

43
Biconditional Elimination (E)
  • P Q P Q
  • P Q
  • gt Q gt P

44
Examples
  • Derive Q
  • K (E Q) Assumption
  • K Assumption
  • E Q 1,2 E
  • Q 3 E

45
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R E goal sentence

46
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R Assumption
  • E sub goal
  • E Assumption
  • R sub goal
  • R E goal sentence

47
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R Assumption
  • R É E 1 E
  • E sub goal
  • E Assumption
  • R sub goal
  • R E goal sentence

48
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R Assumption
  • R É E 1 E
  • E 2,3 ÉE
  • E Assumption
  • R sub goal
  • R E goal sentence

49
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R Assumption
  • R É E 1 E
  • E 2,3 ÉE
  • E Assumption
  • E É R 1 E
  • R 5,6 ÉE
  • R E goal sentence

50
Examples
  • Derive R E
  • (R É E) (E É R) Assumption
  • R Assumption
  • R É E 1 E
  • E 2,3 ÉE
  • E Assumption
  • E É R 1 E
  • R 5,6 ÉE
  • R E 2-4, 5-7 I
Write a Comment
User Comments (0)
About PowerShow.com