Title: COMET Hydromet 00-2 7 March 2000
1National Weather ServiceRiver Forecast
SystemModel Calibration
- COMETHydromet 00-27 March 2000
- 2290 East Prospect Road, Suite 1
- Fort Collins, Colorado 80525
2Calibration
- Calibration process
- Estimation of parameter values which will
minimize differences between observed and
simulated streamflows - Calibration problems
- Parameter interaction
- Non-unique solutions
- Time-consuming
- Inaccuracies
- Non-linearities
- Lack of understanding
3Calibration System
- Parameter estimation/optimization and watershed
simulation - Input
- Point or areal estimates of historical
precipitation, temperature, and potential
evaporation - Initial hydrologic conditions
- Output
- Basin areal averages for point value inputs
- Simulated hydrographs for historical analysis or
use in ESP - Parameter values for models in operational
forecast and ESP systems
4Calibration System (continued)
- Characteristics
- Performs computations for few forecast points for
many time steps - Uses operations table
- Compatible with operational system and ESP
- Produces graphical output for manual calibration
- Includes algorithms for automatic optimization
- Applications
- Historical watershed simulation
- Model calibration
5Model Calibration
- Strategy
- Select river system
- Prepare data
- MAP - Mean Areal Precipitation
- MAT - Mean Areal Temperature
- PE - Potential Evaporation
- QME - Mean Daily Discharge
- QIN - Instantaneous Discharge
-
6Model Calibration (continued)
- Calibrate least complicated headwater basins
- Select calibration period
- Estimate initial parameter - observed Qs
- Trial and error using MCP
- Statistics, observed versus simulated plots
- Proper approach to parameter adjustment
- Automatic parameter optimization - OPT
- Fine tuning - MCP
- Calibrate other headwater areas
- Calibrate local areas
7Model Calibration (continued)
- Important considerations
- Model structure, simulation processes
- Effects of parameter changes
- Use of the forecast information
-
8Data Preparation
- MAP Algorithms - Mean Areal Precipitation
- Techniques for converting point precipitation
measurements into areal measurements and
distributing them properly in time - Daily and hourly data
- Grid point algorithm
- Estimating precipitation at a point (1/D2)
- Estimate gtleast, ltgreatest
- 100-150 points within basin
- Normalize at each grid point, then renormalize
- Thiessen weights
- Grid point versus Thiessen
- Two-pass algorithm - distribute daily, then
estimate missing - Consistency plots
- MAT Algorithms - Mean Areal Temperature
- Max - min data
- Grid point algorithm (1/D)
- Elevation weighting factor
- Centroid (1/DP)
- Conversion to mean temperatures
- Consistency plots
9Historical Data Analysis
- General Information Needed
- Station data on Calibration files
- Station history infro - obs times, changes,
location, moves
MAP Specific Information Non- Mountainous
Mountains --basin boundary --isohyetal
map
--station weights
MAT Specific Information --mean max/min
temperatures Non-Mountainous Mountains
--basin boundary --areal-elev curve
MAPE Specific Information --Evaporation
maps --mean monthly evap --station weights
- PXPP
- check consistency
- compute normals
- MAPE
- check consistency
- generate daily time
- series of MAPE
- TAPLOT3
- get mean max/min for
- mean zone elevation
- MAP3
- (re)check consistency
- generate time series
- of MAP
- MAT3
- generate time
- series of MAT
Temperature
Evaporation
Precipitation
10Sacramento Soil Moisture Accounting Model
11Sacramento Model Structure
12Hydrograph Decomposition
13Sacramento Soil Moisture Components
14Initial Soil-moisture ParameterEstimates By
Hydrograph Analysis
15Initial Soil-moisture Parameter Estimates By
Hydrograph Analysis (continued)
- LZSK - Supplemental baseflow recession
(always gt LZPK) - Flow that typically persists anywhere from 15
days to 3 or 4 months
16Initial Soil Moisture Parameters Estimates by
Hydrograph Analysis (continued)
17Initial Soil Moisture Estimates by Hydrograph
Analysis (continued)
18Multiyear Statistical Output
19Multiyear Statistical Output (continued)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44Automatic Optimization
- Program OPT3
- Uses operations table
- Compatible with MCP, OFS, ESP
- Objective functions
- Daily RMS error
- Monthly volume RMS error
- S - O Exp.
- log S - log O Exp.
- Correlation coefficient
- Maximum Likelihood Estimator
45Automatic Optimization (continued)
- Program OPT3 (continued)
- Optimization schemes
- Pattern search
- Adaptive random search
- Shuffled complex evolution
- Buffer
- Exclusion periods
- Low flows
- Convergence criteria
- Optimize SAC-SMA, SNOW-17, UG, API-SLC, XIN-SMA
46(No Transcript)