Muon Detection - PowerPoint PPT Presentation

About This Presentation
Title:

Muon Detection

Description:

Critical Issues. Rate demand on tracking & trigger technologies ... Track matching between ID & Muon System. Spatial matching. 1/P matching ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 29
Provided by: fet48
Category:

less

Transcript and Presenter's Notes

Title: Muon Detection


1
Muon Detection Measurement _at_ SLHC
  • Frank Taylor
  • MIT
  • Intnl Workshop on Future Hadron Colliders
  • FNAL October 16-18, 2003

ATLAS
CMS
2
Critical Issues
  • Rate demand on tracking trigger technologies
  • Occupancy vs. pattern recognition
  • Ghost tracks Track Matching between ID Muons
  • Trigger PT resolution Rate
  • Stability of chamber parameters under rate
  • Space charge effects, R-T relation affected
  • Spatial resolution vs. rate
  • Beam crossing timing
  • Longevity
  • Chambers Electronics (Rad Hard SE Upsets)
  • Shielding size activation
  • Thick enough
  • Personnel access

3
SLHC Environment
600 _at_ RHIC
4
CMS Muon System
  • Three types of gaseous detectors
  • Drift Tubes in Barrel (DTs)
  • Cathode Strip Chambers in Endcaps (CSCs)
  • Resistive Plate Chambers (RPCs) in both barrel
    and endcaps
  • Coverage ? lt 2.4

5
ATLAS Muon System
  • Muon Spectrometer
  • Toroidal magnetic field ltBgt 0.4 T
  • Air-core coils
  • 3 detector stations
  • - cylindrical in barrel
  • - wheels for endcaps
  • Coverage ? lt 2.7
  • Technologies
  • Fast trigger chambers TGC, RPC
  • High resolution tracking detectors MDT, CSC

6
CMS Barrel Drift Tube Chambers
Drift time 320 to 400 ns
7
Monitored Drift Tube Chambers (MDT)
Barrel
  • 6 / 8 drift tube layers, arranged in
  • 2 multilayers glued to a spacer frame
  • Length 1 6 m, width 1 2 m
  • Gas ArCO2 (937) _at_ 3 bar
  • Maximum drift time 600 ns

End Cap
8
CMS CSC Endcap
  • 468 CSCs of 7 different types/sizes
  • gt 2,000,000 wires (50 mm)
  • 6,000 m2 sensitive area
  • 1 kHz/cm2 rates
  • 2 mm and 4 ns resolution/CSC (L1-trigger)
  • 100 ?m resolution/CSC (offline)

Charge integration time 400 ns
9
Gas Detectors-Tracking Technologies
  • CMS
  • f precision coordinate
  • Drift Tubes (DT) In barrel 0lthlt1
  • 40 mm x 13 mm cell
  • 2nd coordinate
  • Beam crossing time
  • t 400 ns
  • Cathode Strip Chambers (CSC) in endcap 1lthlt2.4
  • 2-D readout
  • f strips 3 to 16 mm
  • ATLAS
  • q precision coordinate
  • Monitored Drift Tubes (MDT) in Barrel Endcap
    0lthlt2.7 except 1st layer
  • 30 mm dia. cell
  • t 600 ns
  • 2nd Coordinate RPC in barrel TGC in endcap
  • CSC inner endcap layer 2.0lthlt2.7
  • 2-D readout
  • q strips 3 mm
  • f strips 10 mm

10
ATLAS l vs. h
Design Criterion m-rate dominated by prompt
decays in inner tracker volume CMS 10 to 15 l in
front of M1 station
11
Neutron Flux ATLAS _at_ 1034 cm-2 s-1
2-10 mSv/h in access
4
20
100
  • (MDT) 5x10-4 e (CSC) 2x10-4
  • (RPC) 5x10-4 e (TGC) 10-3

N neutrons (kHz/cm2)
_at_ 300 keV but strongly energy dependent
12
Photon Flux ATLAS _at_ 1034 cm-2 s-1
2
4
20
  • (MDT) 8x10-3 e (CSC) 5x10-3
  • (RPC) 5x10-3 e (TGC) 5x10-3

N photons (kHz/cm2)
13
Rate Cross section vs. PT - ATLAS
m
m
m
mb/GeV
14
Muon Chamber Counting Rate ATLAS _at_ 1034
gs are dominate component
_at_ 1035 -gt max rate 10 kHz/cm2 MDT 0.5 C/cm-yr
Calorimeter Electronics Chimney TDR
now smaller
15
Muon Track in ATLAS 5 X Bkg. _at_ 1034
Occup. 10
16
Precision Tracking Chamber Occupancy
L 5x1034 cm-2 s-1 MDT CSC
2X larger acceptable 10X larger very
uncomfortable and something has to done
Occupancy ()
17
MDT Performance under Rate
single tube resolution vs. drift radius
, ArCO2(937), 3 bar
Degradation due to space charge fluctuations
18
Luminosity effects
H?ZZ ? ??ee event with MH 300 GeV for
different luminosities
1032 cm-2s-1
1033 cm-2s-1
Praha July 2003
1034 cm-2s-1
1035 cm-2s-1
SLHC prospects Albert De Roeck (CERN)
19
Pattern Recognition to be Studied
  • Track matching between ID Muon System
  • Spatial matching
  • 1/P matching
  • Second Coordinate Ghost tracks
  • Muon Track Isolation
  • Decay ms from b, c, p, K
  • Dominate Bkg from H -gt ZZ -gt mmmm is tt and Zbb
  • Isolation cut DR (Dh2 Df2)1/2 lt Rmax

20
Trigger Issues
  • Resolution
  • Sharpness of Pt turn-on
  • Rate
  • Reals Accidentals
  • Possible to raise threshold ?
  • Resolution Accidentals permitting

21
CMS
Trigger primitive developed from track curvature
in muon system of DT, CSC, RPC
22
ATLAS Muon Trigger Primitives
23
RPC used in both CMS ATLAS
3 mm gap
  • Intrinsically fast response 3 ns
  • RD effort to understand long term
    characteristics
  • Rate handling depends on electrode resistivity
  • r observed to increase by 2 orders of magnitude

24
Thin Gap Chambers (TGC) in ATLAS
Not to scale
  • Small drift distance close wire spacing t 25
    ns
  • 1.8 mm wire spacing, 1.4 mm anode - cathode
  • Has to use a heavily quenched gas

25
TGC Timing
TGC inefficient for 12.5 ns beam crossing interval
26
Trigger PT Resolution
e _at_ turn-on important
27
Trigger Resolution Rate
Accidentals X 10 Accidentals
6 GeV
_at_ 1035 (100 nb-1 s-1 ) Trig Rate 104 Hz
mostly real if accidental rate nominal higher
thresholds larger fraction of accidentals
20 GeV
20 GeV
6 GeV
28
Conclusions
  • RD Program
  • Experience with LHC running
  • Calibration of shielding Backgrounds
  • Identify the real problems
  • Detector issues clear at this time (2003)
  • Faster More Rad-Hard trigger technology needed
  • RPCs (present design) will not survive _at_ 1035
  • TGCs need to be faster perhaps possible
  • Gaseous detectors only practical way to cover
    large area of muon system (DT, MDT CSC) Area
    104 m2
  • Better test data needed on resoln vs. rate
  • Bkg. g and neutron efficiencies
  • Search for faster gas gt smaller drift time
  • Drive technologies to 1035 conditions
  • Technologies DT, MDT CSC not precluded
Write a Comment
User Comments (0)
About PowerShow.com