Title: Results from the Mars Express Active Ionospheric Sounder
1Results from the Mars Express Active Ionospheric
Sounder
- D. D. Morgan1, D. A. Gurnett1, D. L. Kirchner1,
F. Duru1, R. L. Huff1, D. A. Brain2, W. V.
Boynton3, M. H. Acuña4, E. Nielsen5, A.
Safaeinili6, J. J. Plaut6, G. Picardi7 - 1Department of Physics and Astronomy, University
of Iowa, Iowa City, Iowa - 2Space Physics Research Group, Space Sciences
Laboratory, University of California, Berkeley,
California - 3Lunar and Planetary Laboratory, University of
Arizona, Tucson, Arizona - 4NASA Goddard Space Flight Center, Greenbelt,
Maryland - 5Max-Planck-Inst. For Solar System Research,
Katlenburg-Lindau, Germany - 6Jet Propulsion Laboratory, Pasadena, California
- 7Infocom Department, La Sapienza, University of
Rome, Rome, Italy
2Mars Express Dec. 25, 2003
P-03-14
Dipole Antenna 2 x 20 m
3Mars Express Orbit
4Nominal Mars Express Orbital Parameters at
Insertion
- Orbital Inclination 86.3
- Apocenter 11,560 km (altitude)
- Pericenter 258 km (altitude)
- Orbital period 7.5 h
- Observing time about periapsis 1h
5Mars Express Radar Transmitter
6Mars Express Spacecraft
7Summary of Active Ionospheric Sounder sequence
- 160 frequencies sampled between 0.1 and 5.4 MHz
(receive frequencies can be varied). - 1 pulse every 7.857 ms, bandwidth 10 kHz
- 80 receive times per frequency , 91.4 µs/sample
- Complete cycle every 7.543 s (data rate limited).
8Timing of AIS data
9Radar Reflections from the Ionosphere
10Ionogram inversion
11Example Ionogram
12Topics of Interest
- Maximum electron density and total electron
content - Detection of magnetic fields
- Double and complex traces and oblique echoes
- Surface reflection and ionospheric absorption
- Ionogram inversion
- Spacecraft local electron density
- Total electron content
13Maximum electron density and total electron
content
14Maximum Electron Density Versus Solar Zenith Angle
From Gurnett et al.,2005
15Safaeinili et al. LPSC, 2006
16Spacecraft-local electron density
17Inbound Electron Density Orbit 2018
18Inbound Electron Density Orbit 2032
19Inbound Electron Density Orbit 1994
20Log10 ne
21Ionogram inversion
22Radar Reflections from the Ionosphere
23(No Transcript)
24Corrected altitude
Apparent altitude
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34Detection of magnetic fields
35(No Transcript)
36Electron Cyclotron Echoes
37Comparison of the Measured and Model Magnetic
Field Strength
38Electron Cyclotron Echoes, Video/Audio
39Double and Complex Ionospheric Traces
40Oblique Echoes
41(No Transcript)
42Comparison of Oblique Echoes to Crustal Magnetic
Fields
43Oblique Echoes and Crustal Magnetic Fields
44Best Fit Range to a Fixed Target
45(No Transcript)
46Surface reflection and ionospheric absorption
47Surface reflection visibility statistic
- V 0 for not visible or 1 for visible,
tabulated for each ionogram. - We select ionograms at 850 km 10 km altitude
(10 ionograms) and average v.
48Comparison with other data sets
- Averaged surface reflection visibility.
- Background of Mars Global Surveyor Electron
Reflectometer (gt10 MeV) with two hour smoothing
to remove orbit signature. - Background of Mars Odyssey Gamma Ray Spectrometer
(gt 10 MeV). - GOES-12 Solar Environment Monitor soft x-ray flux
(Earth). - NOAA daily X and M class flare counts.
49Overview of data
50Table 1 Absorption Events
- Event Start End
?T, days - 1 20050710-0931 20050725-0833
15.0 - 2 20050801-0633 20050808-1406
7.3 - 3 20050823-0310 20050827-0751
4.2 - 4 20050901-0223 20050904-1112
3.4 - 5 20050905-1353 20050923-1816
18.2 ?
51- Event 1
- Start 20050710-0931
- End 20050725-0833
- Duration 15.0 d
52Event 2 Start 20050801-0633 End
20050808-1406 Duration 7.3 d
53Event 3 Start 20050823-0310 End
20050827-0751 Duration 4.2 d
54Event 4 Start 20050901-0223 End
20050904-1112 Duration 3.4 d
55Event 5 Start 20050905-1353 End
20050923-1816 Duration 18.2 d (?)
56Surface reflection visibility variation with Mars
geodetic longitude and latitude
- Why? Wed like to see if the crustal fields
affect the surface reflection. - Bins are 10 in latitude and 20 in longitude.
- Altitudes lt 1000 km are selected.
- Absorption events are removed.
57Surface reflection visibility as a function of
Mars latitude and longitudeData from July 4
December 14, 2005
58Surface reflection visibility (absorption events
removed) as a function of solar zenith angle
59Appendix Electron-neutral collision damping at
Mars
- Full dispersion relation
Imaginary part Thermal
speed
Real part
Electron-neutral collision frequency
Imaginary part f fpe
eneutral cross section (Strangeway, 1996)
Group velocity
60(No Transcript)
61Conclusion
- Absorption of the surface reflection corresponds
extremely well and in detail with enhancements in
solar energetic particle flux. - Energetic ions can penetrate the night side of
Mars due to their cyclotron radius gt 0.10 R? - Surface reflection visibility is an increasing
function of solar zenith angle, with near 100
visibility on the night side.