Title: Hampton University Graduate Studies 2003
1(e,e'p) and Nuclear Structure
Paul Ulmer Old Dominion University
Hampton University Graduate Studies 2003
2Thanks to
- W. Boeglin
- T.W. Donnelly (Nuclear physics course at MIT)
- J. Gilfoyle
- R. Gilman
- R. Niyazov
- J. Kelly (Adv. Nucl. Phys. 23, 75 (1996))
- B. Reitz
- Saha
- S. Strauch
- E. Voutier
- L. Weinstein
3Outline
- Introduction
- Background
- Experimental
- Theoretical
- Nuclear Structure
- Medium-modified nucleons
- Cross sections
- Polarization transfer
- Studies of the reaction mechanism
- Few-body nuclei
- The deuteron
- 3,4He
4A(e,e'p)B
e'
B
p
q
e
A
Known e and A Detect e' and p
Infer pm q p pB
5(e,e'p) - Schematically
e'
?v
A
e
i.e. bound
Etc.
6Kinematics
p
e'
scattering plane
?pq
reaction plane
(?,q)
e
pA1
?x
out-of-plane angle
In ERLe Q2 ? q?q ? q2 ? 2 4ee'
sin2?/2 Missing momentum pm q p
pA1 Missing mass ?m ? Tp
TA1
7Some (Very Few) Experimental Details
8accidental (uncorrelated)
e
e'
real (correlated)
p
e
9 events
?r
?a
relative time te tp
10Accidentals Rate Re ? Rp ? ??/DF ? I 2 ??/DF
Reals Rate Reep ? I
SN Reals/Accidentals ? DF /(???I)
Compromise Optimize SN and Reep
11Extracting the cross section
e'
NN (cm-2)
Ne
e
(??e, ?pe)
(??p, ?pp)
p
12Some Theory
13Cross Section for A(e,e'p)B in OPEA
A-1
where
Current-Current Interaction
14Square of Matrix Element
???
W??
15Cross Section in terms of Tensors
Mott cross section
Electron tensor
Nuclear tensor
16Consider Unpolarized Case Lorentz Vectors/Scalars
17Nuclear Response Tensor
Xi are the response functions
18Impose Current Conservation
Get 6 equations in 10 unknowns 4 independent
response functions
19Putting it all together
20The Response Functions
Use spherical basis with z-axis along q
21Response functions depend on scalar quantities
Note no ?x dependence in response functions
22Including electron and recoil proton polarizations
23Extracting Response Functions For instance RLT
and A? (A LT)
24Plane Wave Impulse Approximation (PWIA)
spectator
A-1
q p pA-1 pm p0
25The Spectral Function
In nonrelativistic PWIA
e-p cross section
nuclear spectral function
For bound state of recoil system
proton momentum distribution
26The Spectral Function, contd.
Note S is not an observable!
27Elastic Scattering from a Proton at Rest
(m,0)
(?,q)
Before
After
Proton is on-shell ?
(? m)2 ? q2 m2 ?2 2m? m2 ? q2 m2 ?
Q2 ? 2m
28Scattering from a Proton , contd.
structure/anomalous moment
29Scattering from a Proton , contd.
Vertex fcn
Dirac FF
Pauli FF
Sachs FFs
GE and GM are the Fourier transforms of the
charge and magnetization densities in the Breit
frame.
30Form Factor
r
k
k'
Amplitude at q
31Cross section for ep elastic
However, (e,e'p) on a nucleus involves scattering
from moving protons, i.e. Fermi motion.
32Elastic Scattering from a Moving Proton
Before
(? E)2 (qp)2 m2 ?2 2E? E2 ? q2 ?2pq
? p2 m2 Q2 2E? ?2pq ? (E/m) (Q2 ? 2m)
pq ? m
33Cross section for ep elastic scattering off
moving protons
Follow same procedure as for unpolarized (e,e'p)
from nucleus
We get same form for cross section, with 4
response functions
34Response functions for ep elastic scattering off
moving protons
35Quasielastic Scattering
For E ? m ? ? (Q2 ? 2m) pq ? m
If we quasielastically scatter from nucleons
within nucleus
Expect peak at ? ? (Q2 ?
2m) Broadened by Fermi motion pq ? m
36Electron Scattering at Fixed Q 2
Elastic
Nucleus
Deep Inelastic
?
Quasielastic
N
?
Proton
Elastic
Deep Inelastic
?
N
?
37Quasielastic Electron Scattering
R.R. Whitney et al., Phys. Rev. C 9, 2230 (1974).
38Data P. Barreau et al., Nucl. Phys. A402,
515 (1983). y-scaling analysis J.M. Finn, R.W.
Lourie and B.H. Cottman,
Phys. Rev. C 29, 2230 (1984).
39Nuclear Structure
40First, a bit of history The first (e,e'p)
measurement
Frascati Synchrotron, Italy
12C(e,e'p)
27Al(e,e'p)
U. Amaldi, Jr. et al., Phys. Rev. Lett. 13, 341
(1964).
41(e,e'p) advantages over (p,2p)
- Electron interaction relatively weak OPEA is
reasonably accurate. - Nucleus is very transparent to electrons Can
probe deeply bound orbits.
However ejected proton is strongly interacting.
The cleanness of the electron probe is
somewhat sacrificed. FSI must be taken into
account.
42Recall, in nonrelativistic PWIA
where q p pm p0
FSI destroys simple connection between the
measured pm and the proton initial momentum (not
an observable).
43Final State Interactions (FSI)
p
A1
FSI
e'
p0'
q
e
p0
A
44Distorted Wave Impulse Approximation (DWIA)
Treat outgoing proton distorted waves in presence
of potential produced by residual nucleus
(optical potential).
Distorted spectral function
45Optical potential is constrained by proton
elastic scattering data.
- Problems with this approach
- Residual nucleus contains hole state, unlike the
target in pA scattering. - Proton scattering data is surface dominated,
whereas ejected protons in (e,e'p) are produced
within entire nuclear volume.
46100 MeV data is significantly overestimated by
DWIA near 2nd maximum.
NIKHEF-K Amsterdam
J.W.A. den Herder, et al., Phys. Lett. B 184, 11
(1987).
47At pm?160 MeV/c, wf is probed in nuclear interior.
J.W.A. den Herder, et al., Phys. Lett. B 184, 11
(1987).
48Adjusting optical potential renders good
agreement while maintaining agreement with pA
elastic.
J.W.A. den Herder, et al., Phys. Lett. B 184, 11
(1987).
49Saclay Linac, France
12C(e,e'p)11B
J. Mougey et al., Nucl. Phys. A262, 461 (1976).
5012C(e,e'p)11B
p-shell l1
Saclay Linac, France
s-shell l0
J. Mougey et al., Nucl. Phys. A262, 461 (1976).
5112C(e,e'p)11B
NIKHEF-K Amsterdam
G. van der Steenhoven et al., Nucl. Phys. A484,
445 (1988).
5212C(e,e'p)11B
NIKHEF-K Amsterdam
G. van der Steenhoven et al., Nucl. Phys. A484,
445 (1988).
5312C(e,e'p)11B
NIKHEF-K Amsterdam
DWIA calculations fit data reasonably well.
Missing strength observed however.
G. van der Steenhoven, et al., Nucl. Phys. A480,
547 (1988).
5412C(e,e'p)
Bates Linear Accelerator
L.B. Weinstein et al., Phys. Rev. Lett. 64, 1646
(1990).
55MAMI Mainz, Germany
K.I. Blomqvist et al., Phys. Lett. B 344, 85
(1995).
56MAMI Mainz, Germany
Factorization violated. DWIA calculations
underpredict at high pm. Neglected MECs
relativistic effects. Offshell effects uncertain
at high pm.
K.I. Blomqvist et al., Phys. Lett. B 344, 85
(1995).
57208Pb(e,e'p)
AmPS NIKHEF-K Amsterdam
I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684
(1994).
58208Pb(e,e'p)
AmPS NIKHEF-K Amsterdam
Long-range correlations important. SRC and TC
less so, but expected to grow with ?m.
I. Bobeldijk et al., Phys. Rev. Lett. 73, 2684
(1994).
59- Some of the lessons learned
- (e,e'p) sensitive probe of single-particle
orbits. - Proton distortions (FSI) must be accounted for
to reproduce shape of spectral function. Energy
dependence of FSI breaks factorization. - Missing strength in valence orbits, even after
accounting for FSI - At high Pm significant discrepancies found
relative to calculations.
60Where does the missing strength go?
One possibility
Detected
populates high ?m
recoils
61SRC dominate high k (pm ) and are related to
large values of ?m.
C. Ciofi degli Atti, E. Pace and G. Salmè, Phys.
Lett. 141B, 14 (1984).
62Similar shapes for few-body nuclei and nuclear
matter at high k (pm).
C. Ciofi degli Atti, E. Pace and G. Salmè,
Phys. Lett. 141B, 14
(1984).
63Medium-Modified Nucleons
64Searching for Medium Effects on the Nucleon
In parallel kinematics
Can write ep elastic cross section as
65Relate RT/RL to in-medium proton FFs
This relies on (unrealistic) model assumptions!
Nonetheless
662H(e,e'p)n
6Li(e,e'p)
J.E. Ducret et al., Phys. Rev. C 49, 1783 (1994).
J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250
(1990).
NIKHEF-K Amsterdam
6712C(e,e'p) and 12C(e,e')
68JLab Hall C
D. Dutta et al., Phys. Rev. C 61, 061602 (2000).
69However, large FSI effects can mimic this
behavior
70FSI calculations for 16O 1p3/2 Data for 12C 1p3/2
71Another, less model-dependent, method
Polarization Transfer
72Proton Polarization and Form Factors
in nucleus
model assumptions
R. Arnold, C. Carlson and F. Gross, Phys. Rev.
C 23, 363 (1981).
73Polarization Transfer in Hall A
spectrometer
1H and (2H or 4He)
spectrometer FPP
74Measuring the Proton Polarization FPP
75Density Dependent Form Factors
Quark-Meson Coupling Model (QMC)
D.H. Lu, , A.W. Thomas, K. Tsushima, A.G.
Williams, K. Saito, Phys. Lett. B 417, 217 (1998).
76Quark-Meson Coupling Model
4He
D.H. Lu, K. Tsushima, A.W. Thomas, A.G. Williams
and K. Saito, Phys. Lett. B417, 217 (1998) and
Phys. Rev. C 60, 068201 (1999).
77JLab
Preliminary
Preliminary
Calculations by Arenhövel
RDWIA calculations by Udias et al.
78Induced Polarization 4He
JLab E93-049
Preliminary
Py0 in PWIA test of FSI
79S. Malov et al., Phys. Rev. C 62, 057302 (2000).
80Studies of the Reaction Mechanism
81Correlations and Interaction Currents
Correlations
MECs
ICs
82Off-shell Effects
initial proton is bound
Vertex function is not well defined. The Gordon
identity leads to alternative forms, equivalent
only when proton is on-shell.
8312C(e,e'p) L/T Separations
Q20.15 GeV2
Q20.64 GeV2
D. Dutta et al., Phys. Rev. C 61, 061602 (2000).
P.E. Ulmer et al., Phys. Rev. Lett. 59, 2259
(1987).
Bates Linear Accelerator
JLab Hall C
84Excess transverse strength at high ?m.
Persists, though perhaps declines, at higher Q2.
JLab Hall C
D. Dutta et al., Phys. Rev. C 61, 061602 (2000).
856Li(e,e'p) T/L Ratio
DWIA (dashed) fails to describe overall
strength. Scaling transverse amplitude in DWIA
(solid) gives good agreement ? deduce scale
factor, ?.
NIKHEF-K Amsterdam
J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250
(1990).
866Li(e,e'p) T/L Ratio
J.B.J.M. Lanen et al., Phys. Rev. Lett. 64, 2250
(1990).
NIKHEF-K Amsterdam
87The L/T separations suggest
- Additional transverse reaction mechanism above
2-nucleon emission threshold. - MECs primarily transverse in character.
Suggestive of two-body current.
Reminiscent of
88T/L anomaly in inclusive (e,e')
J.M. Finn, R.W. Lourie and B.H. Cottman, Phys.
Rev. C 29, 2230 (1984).
8912C(e,e'p) in Dip Region
Bates Linear Accelerator
R.W. Lourie et al., Phys. Rev. Lett. 56, 2364
(1986).
Data from Bates Linear Accelerator
9012C(e,e'p)
Quasielastic
Delta
Between dip and ?
Peak of ?
Q20.30
Q20.48
Q20.58
L.B. Weinstein et al.,
Phys. Rev. Lett. 64, 1646
(1990).
H. Baghaei et al.,
Phys. Rev. C 39, 177 (1989).
Bates Linear Accelerator
Bates Linear Accelerator
9112C(e,e'p) q990 MeV/c, ?475 MeV
For 60lt?mlt100 MeV, continuum cross section
increases strongly with ?. Large continuum
strength continues up to 300 MeV.
200
300
100
0
Missing Energy (MeV)
Bates Linear Accelerator
Figure adapted from J.H. Morrison et al.,
Phys. Rev. C 59, 221 (1999).
9212C(e,e'p) q970 MeV/c, ?330 MeV
Continuum strength increases strongly with
?. Continuum cross section is smaller at high ?m.
Bates Linear Accelerator
Figure adapted from J.H. Morrison et al.,
Phys. Rev. C 59, 221 (1999).
9312C(e,e'p)
For ?lt?QE, spectroscopic factors consistent with
naïve expectations.
Bates Linear Accelerator
J.H. Morrison et al., Phys. Rev. C 59, 221
(1999).
9416O(e,e'p)
Large discrepancy for 1p3/2. Relativistic effects
predicted to be small here. Two-body currents
responsible??
C.M. Spaltro et al., Phys. Rev. C 48, 2385 (1993).
Circles (solid) NIKHEF-K
Crosses (dashed) - Saclay
9516O(e,e'p) Q20.8 GeV2 Quasielastic
Relativistic DWIA gives good agreement with data.
JLab Hall A
J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000).
9616O(e,e'p) Q 20.8 GeV2 Quasielastic
Two-body calculations of Ryckebusch et al., give
flat distribution, as seen in the data, but
underpredict by a factor of two.
JLab Hall A
N. Liyanage et al., Phys. Rev. Lett. 86, 5670
(2001).
97At high energies, RLT interference response
function sensitive to relativistic effects. For
example, spinor distortion
98Spinor Distortions
N.R. reduction SV ? Mean field SV relatively
small
Dirac spinor SV affects lower components SV
large
9916O(e,e'p) Q 20.8 GeV2 Quasielastic
Udias BS SD only
Udias scatt. state SD only
Udias full
1p 1/2
Sensitive to spinor distortions
Udias - no SD
Kelly
1p 3/2
JLab Hall A
J. Gao et al., Phys. Rev. Lett. 84, 3265 (2000).
100Few-body Nuclei
101The Deuteron
102Short-distance Structure
Low pm
n
High pm
n
For large overlap, nucleons may lose individual
identities Quark/gluon d.o.f.?
103Saclay Linac, France
M. Bernheim et al., Nucl. Phys. A365, 349 (1981).
104Arenhövel Full
Large FSI/non-nucleonic effects. Problem at pm0.
PWBA Jeschonnek or Arenhövel
Arenhövel DWBA
JLab Hall A
P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301
(2002).
105D. Jordan et al., Phys. Rev. Lett. 76, 1579
(1996).
106Bernheim et al.
Blomqvist et al. data cover kinematics beyond ?.
Also neutron exchange diagram important.
Ducret et al.
Jordan et al.
MAMI Mainz, Germany
K.I. Blomqvist et al., Phys. Lett. B 424, 33
(1998).
107FSIMECIC
FSI
K.I. Blomqvist et al., Phys. Lett. B 424, 33
(1998).
Calculations H. Arenhövel
1082H(e,e'p) Q20.23 GeV2 near ?
? clearly important
PWBAFSIMECIC
Bonn Electron Synchrotron, Germany
PWBAFSI
PWBAFSIMEC
H. Breuker et al., Nucl. Phys. A455, 641 (1986).
Calculations Leidemann and Arenhövel
109Proton spectator
p
q
e
n
Neutron hit (low pm)
Proton hit (high pm)
q
q
p
p
n
n
Final State
Final State
n
p
n
p
f
f
f
f
110Q20.67 GeV2 Quasielastic
Large FSI effects. Also, substantial
non-nucleonic effects.
JLab Hall A
P.E. Ulmer et al., Phys. Rev. Lett. 89, 062301
(2002).
111Final State Interactions Can be LARGE
q
inferred
p'
p
112de Forest
Arenhövel/Fabian
NR
Mosconi/Ricci
Arenhövel/Fabian
Hummel/Tjon
NR
de Forest
Wilbois/Arenhövel
Wilbois/Arenhövel
G. van der Steenhoven, Few-Body Syst. 17, 79
(1994).
113What do all these data and curves suggest?
- Relativistic effects substantial in A? (and
RLT). - de Forest CC1 nucleon cross section gives same
qualitative features as more complete
calculations ? here, relativity more related to
nucleonic current, as opposed to deuteron
structure.
114D-state important
AmPS NIKHEF-K Amsterdam
I. Passchier et al., Phys. Rev. Lett. 88, 102302
(2002).
115Lots more d(e,e'p) data on the way!
1162H(e,e'p)n E01-020 Hall A
Perpendicular R LT Q 2 0.80, 2.10, 3.50
(GeV/c)2 x1 p m from 0 to ? 0.5 GeV/c
Parallel/Anti-parallel Q 2 2.10 (GeV/c)2
vary x p m from 0 to 0.5 GeV/c Neutron angular
distribution Q 2 0.80, 2.10, 3.50 (GeV/c)2
1172H(e,e'p)n E01-020 Hall A
1182H(e,e'p)n E01-020 Hall A
1192H(e,e'p)n with JLab 12 GeV upgrade
120Preliminary Hall B E5 Data 2H(e,e'p)
Hall B data covers large range of Q2 and
excitation as well as ? coverage to separate RLT,
RLT' and RTT.
1213,4He
1223He(e,e'p)
Calculations by Laget dashedPWIA
dot-dashedDWIA solidDWIAMEC
Arrows indicate expected position for correlated
pair.
Saclay Linear Accelerator
C. Marchand et al., Phys. Rev.
Lett. 60, 1703 (1988).
1233He(e,e'p)d
3He(e,e'p)np
3BBU similar to d?np
C. Marchand et al., Phys. Rev. Lett. 60, 1703
(1988).
124Large effects from FSI and non-nucleonic
currents. Highest pm shows excess strength.
JLab Hall A
125General features reproduced but not at correct
values of pm.
JLab Hall A
126The most direct way to look for correlated
nucleons? Detect both of them ? JLab Hall B
1273He(e,e'pp)n Hall B
128Hall B
3He(e,e'pp)n 2 GeV
pperp lt 300 MeV/c
cos(?nq)
Isotropic fast pairs ?
pair not involved in reaction.
PRELIMINARY
cos(?pq)
129Hall B
3He(e,e'pp)n
pperp lt 300 MeV/c
Pair momentum along q GeV/c
Pair momentum along q GeV/c
Small momentum along q ? pair not
involved in reaction.
PRELIMINARY
Little Q2 or isospin dependence.
2 GeV has acceptance corrections
130Direct evidence of NN correlations
Before
After
p
n
n
p
p
p
1314He(e,e'p)3H
ArgonneMod 7
Data and calculations corrected for MECIC
(Laget). Longitudinal overpredicted.
UrbanaMod 7
pm90 MeV/c
pm90 MeV/c
Saclay
A. Magnon et al., Phys. Lett. B 222, 352 (1989).
1324He(e,e'p)3H
Calculations predict q dependence.
Saclay
J.E. Ducret et al., Nucl. Phys. A556, 373 (1993).
1334He(e,e'p)3H
Again, calculations predict q dependence.
J.E. Ducret et al., Nucl. Phys. A556, 373 (1993).
1344He(e,e'p)3H
MEC/3B
Laget
MEC/2B
Minimum filled in by FSI and 23-body currents.
FSI
PWIA
2-body
Schiavilla
FSI
PWIA
treeone-loop
Nagorny
AmPS NIKHEF-K Amsterdam
PWIA
tree
J.J. van Leeuwe et al., Phys. Rev. Lett. 80, 2543
(1998).
135FSI dependence on kinematics
q
actual
inferred
p'
p
q
p
p'
1364He(e,e'p)3H
It looks like the minimum is filled in here as
well.
JLab Hall A Experiment E97-111, J. Mitchell, B.
Reitz, J. Templon, cospokesmen
137Summary
- (e,e'p) sensitive to single-particle aspects of
nucleus, but - More complicated physics is clearly important.
- Spectroscopic factors reduced compared to naïve
shell model (including FSI corrections). - Missing strength at least partly due to
interaction currents direct interaction with
with exchanged mesons or interaction with
correlated pairs (spreads strength over ?m).
138Summary contd.
- After several decades of experimental and
theoretical effort, there are still unanswered
questions. - What is the nature of the interaction of the
virtual photon with the nucleon medium and
offshell effects? - Handling FSI and other reaction currents still
problematic, though realistic calculations are
now available for the lighter systems. - High energy program is underway, pushing to
shorter distance scales, emphasizing relativistic
effects,