Design methodology development for VCSEL-based guided-wave optical interconnects - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Design methodology development for VCSEL-based guided-wave optical interconnects

Description:

for VCSEL-based guided-wave. optical interconnects. Michiel De Wilde & Olivier Rits. Ghent University, Belgium. IMEC ... Simulations to extract system-level properties ... – PowerPoint PPT presentation

Number of Views:148
Avg rating:3.0/5.0
Slides: 23
Provided by: michiel5
Category:

less

Transcript and Presenter's Notes

Title: Design methodology development for VCSEL-based guided-wave optical interconnects


1
Design methodology developmentfor VCSEL-based
guided-waveoptical interconnects
  • Michiel De Wilde Olivier Rits
  • Ghent University, Belgium
  • IMEC

2
Overview
  • Optical interconnect
  • rationale structure
  • Optical interconnect design space
  • exploration optimization
  • Simulations to extract system-level properties

3
Optical interconnect rationale (1)
Moores Law
(source Intel)
  • Denser inter-chip interconnect requirement
  • Rising clock frequencies

4
Optical interconnect rationale (2)
ground plane
signal wire
A
wire length L
Inter-wire spacing area
  • Wire capacitance resistance skin effect
  • limit the electrical interconnect bandwidth B

(Miller-Ozaktas)
5
Optical interconnect rationale (3)
  • Problematic interconnectbetween ICs and at the
    IC access level
  • Industrial packet routers
  • Some parallel and distributed processing systems
  • Use of optics a solution on physical grounds
  • No electromagnetic interference problems
  • Almost distance frequency independent losses
  • Optical I/O integration with CMOS
    solvesinterconnect problems at the IC access
    level

6
VCSEL-based parallel optical I/O
Connector
Fiber bundle
Package
PCB
VCSELs
Photodiodes
Solder balls
CMOS substrate (top side visible)
7
Fields involved
8
Complex design space
  • Several approaches are possible
  • Some continuously valued parameters too
  • ?, operating currents, numerical aperture,
    physical dimensions
  • Decisions in one field may affect other fields

Increase of numerical aperture of fiber
better coupling
less bend losses
worse coupling
(not to scale)
9
Design optimization
  • Systematic way of making choices design
    methodology
  • Designer states constraints
  • Tool suggests good solutions meeting constraints
  • Important system-level property categories
  • Technological feasibility
  • Performance (timing/power characteristics)
  • Reliability
  • Implementation cost

10
Design methodology development
11
Estimating timing/power/reliability
  • Issues for direct estimation(e.g. from tabular
    data)
  • Non-linear interactions between different
    fields(electrical, optical, thermal)
  • Impact of noise and process variations
  • Interconnect simulation
  • Simulator
  • Simulator models
  • Stimuli
  • Calculation of properties from simulation results

12
Simulator models
13
Simulator choice
  • Device-level simulators
  • OptiWave, RSoft, WinLase,
  • Too detailed (some parameters are IP)
  • Too slow for this purpose (finite-element
    methods)
  • Circuit-level simulators
  • SPICE, Verilog-AMS, VHDL-AMS,
  • More concise parameter set possible
  • Faster (only integration over time)

14
Example photodiode model
module pin_photodiode(in,anode,cathode)
input in inout anode, cathode power
in electrical anode, cathode parameter
real Cdep0, Cbo0, Rbas0, Resp0,
Id0 parameter real pole-1/(CdepRbas)
parameter real laplace_coeff_0CdepCbo
parameter real laplace_coeff_1CdepCboRbas
charge rc analog begin
I(cathode,anode) lt laplace_zp(RespPwr(in)Id,,
pole,0) Q(rc) lt laplace_np(V(cathode,a
node),laplace_coeff_0,laplace_coeff_1,pole,0)
end endmodule
  • Terminals
  • Model parameters
  • Equations describing internal state and outputs

15
Driver/receiver model
  • Normal analog electrical circuits
  • IP protection no real circuit provided
  • Alternative parameterised flowchart
  • Validation measurementson non-hybridized CMOS

Receiver flowchart
Photocurrent input
Transimpedance preamplifier
Postamplifier
Equalizer
Decision circuit
Limiting amplifier
Digital output
16
VCSEL model
  • Nonlinear differential equation system
  • Jungo, et.al. VISTAS software package
  • equations without spatial integration
  • Difficult parameterization
  • Validation measurements on non-hybridized VCSELs

17
Fiber-based optical path
  • Abstraction of dispersion (short distance)
  • Coupling coefficients for losses crosstalk

VCSEL-fiber crosstalk
Fiber-photodetector crosstalk
Fiber-photodetector coupling losses
VCSEL-fiber coupling losses
absorption
macrobend losses
Connectorlosses crosstalk
(not to scale)
18
Fiber bend losses
  • Bend losses can be approximated using a
    combination of raytracing results (H. Lambrecht,
    et.al.)
  • Validation through optical path measurements

90 bend X axis NA fiber Y axis bending
radius Blue color high losses
(source H. Lambrecht)
19
Simulation illustration
(exaggerated VCSEL model parameters)
(inverted output)
20
Simulation setup
  • Interconnection signals
  • Digital pseudorandom
  • Design-specific
  • Parameters
  • Process corners
  • Monte-Carlo generated
  • inter-device correlation
  • Noise
  • asynchronous
  • synchronous
  • mesochronous
  • Predominant noise substrate noiseat the
    receiver preamplifier
  • amplify some few µAof photocurrent

21
Conclusion
  • Illustrated optical interconnect
  • rationale structure
  • Discussed optical interconnect design space
  • exploration optimization
  • Simulations to extract system-level properties
  • Explained approach
  • Discussed models
  • Future work

22
Acknowledgements
  • IST Interconnect by Optics project partners
  • Hannes Lambrecht (Ghent University, IMEC-INTEC)
  • Fiber bend losses modelling
  • Marc Jungo
  • VISTAS VCSEL modelling project
  • Fund for Scientific Research Flanders (Belgium)
    (F.W.O.)
  • Research assistantship
Write a Comment
User Comments (0)
About PowerShow.com