Title: Folie 1
1CBM at FAIR
- Outline
- ? CBM Physics
- ? Feasibility studies
- ? Detector RD
- ? Planning, costs, manpower, ...
-
2Mapping the QCD phase diagram with heavy-ion
collisions
The critical end point
- CBM physics
- exploring the high density region
- of the QCD phase diagram.
- Search for
- restoration of chiral symmetry
- partonic matter at large µB
- critical endpoint
Dense baryon- dominated matter
Meson- dominated matter
3Trajectories (3 fluid hydro)
Ivanov Toneev
Hadron gas EOS
Calculations reproduce freeze-out conditions 30
AGeV trajectory close to the critical endpoint
4CBM physics topics and observables
1. In-medium modifications of hadrons
? onset of chiral symmetry restoration at high
?B measure ?, ?, ? ? ee-
open charm (D mesons) 2.
Strangeness in matter (strange matter?) ?
enhanced strangeness production ?
measure K, ?, ?, ?, ? 3. Indications for
deconfinement at high ?B ? anomalous
charmonium suppression ? measure
J/?, D ? softening of EOS
measure flow excitation function 4.
Critical point ? event-by-event
fluctuations 5. Color superconductivity
? precursor effects ?
5Experimental challenges
Central AuAu collision at 25 AGeV URQMD
GEANT4 160 p 400 ?- 400 ? 44 K
13 K-
- ? 107 AuAu reactions/sec
- (beam intensities up to 109 ions/sec, 1
interaction target) - ? determination of (displaced) vertices with high
resolution (? 30 ?m) - ? identification of electrons and hadrons
6The CBM Experiment
? Radiation hard Silicon pixel/strip detectors in
a magnetic dipole field ? Electron detectors
RICH TRD ECAL pion suppression up to 105 ?
Hadron identification RPC, RICH ? Measurement
of photons, p0, ?, and muons electromagn.
calorimeter (ECAL) ? High speed data acquisition
and trigger system
7Feasibility studies
Event generators URQMD, PLUTO Transport
GEANT3,4 via VMC
8Feasibility studies charmonium measurements
Assumptions ideal tracking
ideal electron identification,
Pion suppression 104 Background URQMD
AuAu 25 AGeV GEANT4
9Low mass electron-positron pairs
Assumptions ideal tracking and electron
identification Background URQMD AuAu 25 AGeV
GEANT4
- Cuts
- 1. single electron
- pt gt 0.1 GeV/c
- d lt 50 mm
- 2. electron pair
- vz lt 0.1 cm
- vt lt 0.01 cm
- D lt 0.01 cm
- T gt 10
S/B 0.3 (??) S/B 1.2 (?)
10Pion misidentification
a)0
b)0.01
c)0.1
d)1
11Feasibility study open charm
Background suppression by cut on detached vertex
? 1000
D0 ? K-? (central AuAu _at_ 25 AGeV) Assuming
ltD0gt 10-3 S/B ? 1
Similar studies under way for D ? K- ? ?
, D?D0 ?
Crucial detector parameters Material budget of
first 2 Silicon stations Single hit resolution
12Hadron identification
sTOF 80 ps
Bulk of kaons (protons) can well be identified
with sTOF 80 100 ps
13acceptances
?
K
p
pt GeV/c
y
14acceptances
D0
J/?
pt GeV/c
y
15event-by event fluctuations K/? ratio
10k UrQMD events
16Measurement of dynamical fluctuations
True value 5 10
purity, ?dyn, ?dyn,
40 4.01.4 6.9 2.4
50 4.3 1.7 9.8 3.9
60 5.5 2.5 8.5 4.0
70 6.0 3.0 10.4 5.2
10 fluctuation
Simulations in progress to improve statistics
17Tracking with Silicon Stations
AuAu 25 AGeV Reconstructed tracks
Reconstruction efficiency gt 95 Momentum
resolution 0.6
18Roadmap for feasibility studies towards the
Technical Report
LOI (Jan. 2004) URQMD (and PLUTO) and GEANT4
(no tracking, ideal particle identification,
efficiencies 100, ...) CBM software week May
2004 (? 50 participants) simulation and
analysis framework using VMC (GEANT3/4) based on
ROOT Meeting of tracking group in July/August
2004 implementation of tracking algorithms and
simple detector reponses (digitizers) Collaborati
on Meeting Oct. 6-8, 2004 first results of
simulations with tracking, particle ID and
efficiencies Technical Report Jan. 2005 results
of realistic simulations
19Design of a Silicon Pixel detector
Silicon Tracking System 7 planar layers of
pixels/strips. Vertex tracking by two first pixel
layers at 5 cm and 10 cm downstream target
- Design goals
- low materal budget d lt 200 µm
- single hit resolution lt 20 µm
- radiation hard (dose 1015 n eq/cm2)
- fast read out (20 40 MHz)
- Roadmap
- RD on Monolithic Active Pixel Sensors (MAPS)
- pitch 20 µm
- thickness below 100 µm
- single hit resolution ? 3 µm
- radiation hard up to 1012 n eq/cm2
- read out 0.2 MHz
- RD on radiation hardness and read out speed
- Fallback solution Hybrid detectors
-
MIMOSA IV IReS / LEPSI Strasbourg
20Design of a fast RICH
- Design goals
- electron ID for ? gt 42
- e/p discrimination gt 100
- hadron blind up to about 6 GeV/c
- low mass mirrors (Be-glass)
- fast UV detector
URQMD GEANT4 AuAu 25 AGeV radiator (40 He
60 CH4) ? 40 rings per event, 30-40 photons per
ring (incl. efficiencies)
21Pion suppression with RICH
electrons producing Cherenkov light
AuAu 25 AGeV 100 events
URQMDGEANT4
pions from AuAu 25 AGeV
Cherenkov threshold
pion threshold 5.9 GeV/c 90 saturation angle at
13.5 GeV/c
22Experimental conditions
Hit rates for 107 minimum bias AuAu collisions
at 25 AGeV
Rates of gt 10 kHz/cm2 in large part of detectors
! ? main thrust of our detector design studies
23Design of a fast TRD
- Design goals
- e/p discrimination of gt 100 (p gt 1 GeV/c)
- High rate capability up to 150 kHz/cm2
- Position resolution of about 200 µm
- Large area (? 500 m2, 9 layers)
Simulation of pion suppression TRD with fast
gaseous detector
- Roadmap
- Outer part ALICE TRD
- Inner part
- MWPC/GEM/micromegas
- Straw tube TRT (ATLAS)
- Fast read-out electronics
Tests of prototypes (MWPC, GEMs, micromegas)
July 2004 at SIS
24Design of a high rate RPC
- Design goals
- Time resolution 80 ps
- High rate capability up to 25 kHz/cm2
- Efficiency gt 95
- Large area ? 150 m2
- Long term stability
Tests of prototypes with low resistivity glass
electrodes ITEP July 2004
Prototype test
detector with plastic electrodes (resistivity
109 Ohm cm.) P. Fonte, Coimbra
25FOPI-Segmented-Anode-RPCs
26Design of an electromagnetic calorimeter
- Lead-scintillator calorimeter
- 0.5 1 mm thick tiles
- 25 X0 total length
- PM read out
Distance between electron and closest track in
the innermost region
Granularity inner region 2x2 cm2 intermediate
region 5x5 cm2 outer region 10x10 cm2
Tests of detector module prototype July 2004 at
CERN
27Run time estimate J/?
beam energy AGeV J/? mult. produced min. bias J/? yield detected per week runtime weeks
10 410-8 7102 10
15 410-7 7103 10
20 210-6 3.5104 10
25 410-6 7104 5
30 1.210-5 2.1105 2
35 210-5 3.5105 1
BR 6, e 0.1 reaction rate 5 MHz, trigger
reduction 105 (e- from ?-conversion with pT ? 1
GeV/c)
Au Au ? 1 year
Additional measurement of excitation functions
for A A (A 12, 100) up to 45 AGeV ( 1
year) p A (A 12, 100, 200) up to 90 GeV (1
year) p p up to 90 GeV (6 month)
28Run time estimate D0-Mesons
Multiplicity 2x10-4 / minimum bias event AuAu
25 AGeV BR 4, e 0.1, ? 8x10-7 / event Goal
trigger reduction 400 (displaced vertex) reaction
rate 10 MHz, trigger rate 25 kHz Number of
detected D0-Mesons 8/s (7x105/day)
29Run time low-mass vector mesons 4 rho mesons /
minimum bias event AuAu 25 AGeV BR 4.5x10-5,
e 0.1, ? 1.8x10-5 / event Reaction rate
without trigger reduction 25 kHz Number of
detected rho mesons 4x104/day
Measurements of excitation functions (beam on
target) A A (A 12, 100, 200) up to 45 AGeV
( 36 weeks) p A (A 12, 100, 200) up to 90 GeV
(15 weeks) p p up to 90 GeV (5 weeks)
30Cost estimate
CDR
Detector Mio.
Silicon pixel 1
Silicon Strip 7
RICH 3
TRD 3
RPC 4
Trigger/DAQ 3
Super-conducting dipole 2
Infrastructure 4
Sum 27
LOI
Component Mio.
TRD (full cost) 12
Electromagnetic Calorimeter 8
offline computing 3
Sum 23
31CBM Participation in EU Programmes
- EU FP6 Hadron Physics
- (2004 2006)
- Joint Research Projects (approved)
- Fast gaseous detectors
- Advanced TOF Systems
- Future DAQ and trigger systems
- Network activities (approved)
- CBMnet
- INTAS-GSI (2004-2005)
- approved projects
- Transition Radiation Detectors
- JINR LHE Dubna, NC PHEP Minsk,
- INFN Frascati, GSI Darmstadt
-
- Straw tube tracker
- JINR LPP Dubna, LPI Moscow,
- PNPI Gatchina, TU Warsaw,
- FZ Rossendorf, FZ Jülich
- Resistive Plate Chambers
- INR Troitzk, IHEP Protvino,
- ITEP Moscow, LIP Coimbra,
- Univ. Heidelberg
- Electromagnetic calorimeter
INTAS open call (2005-2006) CBM Network
32CBM RD working packages
Feasibility, Simulations
Design construction of detectors
Data Acquis., Analysis
Tools GSI
Silicon Pixel IReS Strasbourg Frankfurt
Univ., GSI Darmstadt, RBI Zagreb, Univ. Krakow
Fast TRD JINR-LHE, Dubna GSI Darmstadt, Univ.
Münster INFN Frascati
Trigger, DAQ KIP Univ. Heidelberg Univ.
Mannheim GSI Darmstadt JINR-LIT, Dubna Univ.
Bergen KFKI Budapest Silesia Univ. Katowice Univ.
Warsaw
?,?, ? ?ee- Univ. Krakow JINR-LHE Dubna
D ? Kp(p) GSI Darmstadt, Czech Acad. Sci.,
Rez Techn. Univ. Prague
Straw tubes JINR-LPP, Dubna FZ Rossendorf FZ
Jülich Tech. Univ. Warsaw
Silicon Strip SINP Moscow State U. CKBM St.
Petersburg KRI St. Petersburg
J/? ? ee- INR Moscow
Analysis GSI Darmstadt, Heidelberg Univ,
ECAL ITEP Moscow GSI Darmstadt Univ. Krakow
RPC-TOF LIP Coimbra, Univ. Santiago de
Com., Univ. Heidelberg, GSI Darmstadt, Warsaw
Univ. NIPNE Bucharest INR Moscow FZ
Rossendorf IHEP Protvino ITEP Moscow
Hadron ID Heidelberg Univ, Warsaw Univ. Kiev
Univ. NIPNE Bucharest INR Moscow
RICH IHEP Protvino GSI Darmstadt Pusan Univ.
Tracking KIP Univ. Heidelberg Univ.
Mannheim JINR-LHE Dubna
Magnet JINR-LHE, Dubna GSI Darmstadt
33Task Participating Institutions FTE
D-Mesons GSI, CAS Rez, TU Prague 1
low-mass vector mesons U Krakow, JINR-LHE 3
charmonium ID via ee- INR Moscow 1
charmonium ID via µµ- PNPI, GSI 1
hadron ID via TOF Heidelberg, Kiev, NIPNE, INR, RBI 3
Hyperon ID PNPI, TU St. Pb 1
Sim. analysis framework GSI Darmstadt 2
Tracking KIP HD, U Mannheim, JINR-LHE , JINR-LIT 5
RD on Silicon Pixel Detector IReS, U Frankfurt, GSI, RBI, U Krakow 3
RD on Silicon Strip Detector Moscow SU, CKBM, KRI, Obninsk Univ 2
RD on RPC TOF detector system with read-out electronics LIP Coimbra, Univ. Santiago, U Heidelberg, GSI, NIPNE, INR, FZR, IHEP, ITEP, Korea Univ., RBI, U Krakow, U Marburg 8
RD on TRD JINR-LHE, GSI, Univ. Münster, PNPI, NIPNE 6
RD on straw tube tracker JINR-LPP Dubna, FZR Rossendorf 2
RD on RICH IHEP, GSI, Pusan Univ., PNPI 4
RD on ECAL ITEP, Univ. Krakow, 2
Trigger and Data Acquisition KIP HD, U Mannheim, JINR LIT, GSI, U Bergen, KFKI Budapest, Silesia Univ. , PNPI, U Warsaw 7
Superconducting dipole magnet JINR-LHE Dubna, GSI Darmstadt 2
SUM 53
34CBM Collaboration 39 institutions, 14 countries
Croatia RBI, Zagreb Cyprus Nikosia Univ.
Czech Republic Czech Acad. Science,
Rez Techn. Univ. Prague France IReS
Strasbourg Germany Univ. Heidelberg, Phys.
Inst. Univ. HD, Kirchhoff Inst. Univ.
Frankfurt Univ. Mannheim Univ. Marburg Univ.
Münster FZ Rossendorf GSI Darmstadt
Russia CKBM, St. Petersburg IHEP Protvino INR
Troitzk ITEP Moscow KRI, St. Petersburg Kurchatov
Inst., Moscow LHE, JINR Dubna LPP, JINR
Dubna LIT, JINR Dubna Obninsk State Univ. PNPI
Gatchina SINP, Moscow State Univ. St. Petersburg
Polytec. U. Spain Santiago de Compostela Univ.
Ukraine Shevshenko Univ. , Kiev Univ. of
Kharkov
Hungaria KFKI Budapest Eötvös Univ.
Budapest Korea Korea Univ. Seoul Pusan National
Univ. Norway Univ. Bergen Poland Krakow
Univ. Warsaw Univ. Silesia Univ.
Katowice Portugal LIP Coimbra Romania NIPNE
Bucharest
35Time schedule Milestones 1. Technical Proposal
begin of 2005 2. Technical
Design Report end of 2007
Subproject 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
Si-Tracker
RICH
TRD
TOF-RPC
ECAL
Trigger/DAQ
Electronics
Magnet
Infrastructure
simulations, RD, design Prototyping Construction Installation, test