Introduction to hypothesis testing - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Introduction to hypothesis testing

Description:

Introduction to hypothesis testing. Determine characteristics ... Logic of hypothesis testing: State hypotheses. H0: the null hypothesis. No effect of treatment ... – PowerPoint PPT presentation

Number of Views:41
Avg rating:3.0/5.0
Slides: 26
Provided by: alanm1
Category:

less

Transcript and Presenter's Notes

Title: Introduction to hypothesis testing


1
Introduction to hypothesis testing
  • Determine characteristics of a population from a
    sample
  • Sample does not match population
  • Differences due to chance
  • Differences reflect real effects
  • Research treatment
  • Treatment population mean different from original
    mean?

2
Logic of hypothesis testing State hypotheses
  • H0 the null hypothesis
  • No effect of treatment
  • Any differences due to sampling error
  • H1 the alternative or scientific hypothesis
  • Treatment had an effect
  • Real differences
  • Hypotheses contradictory and mutually exclusive
  • H0 states a specific value for population
    parameter
  • E.g., µtreatment µpopulation
  • How likely are the results if Ho is true?
  • If unlikely H0 is probably not true

3
Logic of hypothesis testing
  • Set criteria for decision
  • How unlikely?
  • Collect sample
  • Observe sample statistic
  • Evaluate sample statistic consistency with the
    population parameter given by the H0
  • Probability that the H0 is true
  • Very unlikely reject the H0
  • Reasonable chance H0 truefail to reject H0
  • Assume H0 true
  • Argument by contradiction

4
Evaluating the H0
  • Alpha a or significance level
  • Traditional levels
  • .05 or .01
  • p value p(H0 true)
  • Critical regioncritical values
  • Choice of .05 or .01how important to be certain

5
Example using coin tossing
  • H0 Coin is fair and the P(head) .5
  • H1 Coin is not fair and P(head) ? .5
  • Sample 10 heads in a row
  • Set a at .05
  • P(10 heads) 1/2 X 1/2 X 1/2 X...X ½ 1/210
    .000976
  • Based on assumption H0 true

6
Errors
  • Type I or a errors consist of rejecting the H0
    when the H0 is true
  • p (type I error) a
  • Type II or ß errors consist of failing to reject
    the H0 when the H0 is false
  • p (type II error) ß

7
z test
  • µ 1,000, s 500
  • M 3,000, n 20
  • H0 ? 1,000
  • H1? ? 1,000
  • a .05

8
  • If M 1,050
  • Area in tail for z (0.45) .3264, p 2.3264
    0.6528
  • P gt .05, fail to reject H0

9
Steps
  • State H0 and H1
  • Set a
  • Determine critical value and region
  • Determine
  • Evaluate H0, z exceed critical value

10
Another example
  • ? 4, s .45
  • M 3.85, n 25
  • H0 ? 4, H1 ? ? 4
  • ? .01
  • Critical z 2.57583
  • Z 1.667, pgt.01
  • Retain the H0

11
Basic Elements
  • Hypothesized population parameter H0
  • Sample statistic
  • Estimate of error/chance, standard error
  • Alpha level ?
  • ? .05 the test statistic critical value will
    be around 2.00
  • ? .01 the test statistic critical value will
    be around 2.50
  • ? .001 the test statistic critical value will
    be around 3.00

12
  • Reporting
  • Significant test statistic value, p lt alpha
  • z 2.50, p lt .05
  • Not significant test statistic value, p gt alpha
    or n.s.
  • z 1.22, p gt.05
  • Precise p from computer
  • Assumptions
  • Random sample
  • Independent observations
  • ? unchanged by the treatment, constant added to
    scores

13
Directional versus nondirectional tests
Onetailed and twotailed tests
  • Two tailed, difference regardless of direction
  • H0 ? 100, H1 ? ? 100
  • One tailed, specific direction
  • H0 ? 1,000, H1 ? gt 1,000
  • a .05
  • z two tailed 1.96
  • z one tailed 1.65

14
Concerns
  • Criticisms
  • All or none 1.95 versus 1.97
  • H0 artificial
  • Ignores magnitude of effect
  • M 3.9. The ? .45.
  • H0 ? 4, H1 ? ? 4
  • ? .01, z 2.58
  • n 25
  • z 1.11, p gt .01

15
  • n 900
  • z 6.67, p lt .01
  • Statistical versus real world significance
  • Effect size

16
  • Mean 3.5
  • Small 0 lt d lt 0.2 (.25)
  • Medium 0.2 lt d lt 0.8 (.5)
  • Large effect d gt 0.8 (1.25)

17
Statistical Power
  • Ability to reject false H0
  • Power depends on
  • Magnitude of treatment effect
  • Alpha level
  • Sample size
  • One tailed versus two tailed test
  • Magnitude of treatment effect
  • Small .25 s
  • Medium .75 s
  • Large 1.25 s

18
Effect Magnitude and Power
  • µ 100, sM 10, Real µ 110 (actual population
    µ), a .05
  • Critical value assuming H0 is true
  • .1685 above 119.6

19
  • µ 100, sM 10, real µ 135, a .05
  • Critical value

  • .
  • .9382 above 119.6

20
Sample Size and Power
  • µ 100, s 10, real µ 110, n 4, sM 5, a
    .05
  • Critical value

  • .5160 above 109.8

21
Sample Size and Power
  • µ 100, s 10, real µ 110, n 25, sM 2, a
    .05
  • Critical value

  • .9987 above 103.92

22
Alpha, Beta, and Power
  • µ 100, s 5, a .05, z 1.96, M 110
  • Critical value 109.8
  • µ 100, s 5, a .01, z 2.575
  • Critical value 114.9
  • More stringent a (.01)
  • Lower p (Type I error)
  • Higher p (Type II error)
  • Lower power

23
One versus Two Tailed
  • Two tailed, µ 100, s 5, a .05, z 1.96,
    Real µ 110
  • Critical value 109.8
  • One tailed, µ 100, s 5, a .05, z 1.65,
    Real µ 110
  • Critical value 108.25

24
Effect Size, Power, and n
25
Interval Estimation
  • Critical Value of Z 1.96
  • M 50, sM 4
  • Hypothesized µ lt 42.16 or µ gt 57.84 reject H0
Write a Comment
User Comments (0)
About PowerShow.com