Title: Downscaling Tools
1Downscaling Tools
- Introduction to LARS-WG and SDSM
2LARS-WG stochastic weather generator (
http\\www.iacr.bbsrc.ac.uk\mas-models\larswg.html
)
- Generation of long weather time-series suitable
for risk assessment - Ability to extend the simulation of weather to
unobserved locations - A computationally inexpensive tool to produce
climate change scenarios incorporating changes in
means and in variability
3LARS-WG stochastic weather generator(
http\\www.lars.bbsrc.ac.uk\model\larswg.html )
- Generates precipitation, min and max temperature
and solar radiation - Modelling of precipitation events is based on
wet/dry series - Semi-empirical distributions are used for
precipitation amounts, dry/wet series and solar
radiation - Temperature and solar radiation are conditioned
on the wet/dry status of a day - Temperature and solar radiation are
cross-correlated
4LARS-WG
- Model calibration - SITE ANALYSIS
- Model validation - QTEST
- Generation of synthetic weather data - GENERATOR
5SITE ANALYSIS
6QTEST
Compare observed and synthetic data to evaluate
LARS-WG performance
7GENERATOR
Generate synthetic weather data to extend time
series, or for climate change studies
8GENERATOR
9Limitations of LARS-WG (and weather generators in
general) ...
- Temporal downscaling only
- Designed for use at individual sites only (no
spatial correlation) - Can only represent events in calibration data set
- Generally underestimate variability
10SDSM
- A decision support tool for assessing local
climate change impacts - Facilitates the rapid development of multiple,
low-cost, single-site scenarios of daily surface
weather variables under current and future
climate forcing - Based on a multiple regression-based method
11SDSM Structure
- 7 steps
- Quality Control and Data Transformation
- Screening of Predictor Variables
- Model Calibration
- Weather Generation (using observed predictors)
- Statistical Analyses
- Graphing Model Output
- Scenario Generation (using climate model
predictors)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15Model Verification
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Tmax gt 25C
21(No Transcript)
22Cautionary Remarks
- SDSM provides a parsimonious technique of
scenario construction that complements other
methods - SDSM should not be used uncritically as a black
box (evaluate all relationships using
independent data) - Local knowledge is an invaluable source of
information when determining sensible
combinations of predictors - Daily precipitation amount at individual stations
is the most problematic variable to downscale - The plausibility of all SDSM scenarios depends on
the realism of the climate model forcing - Try to apply multiple forcing scenarios (via
different GCMs, ensemble members, timeslices,
emission pathways, etc.)
23Projet FACC (en cours 2003-2004)Etude sur
force/faiblesse de SDSM et LARS-WGpour extrêmes
et variabilité climatique
Coordonnateur Philippe Gachon Collaborateurs
- Ouranos Alain Bourque, René Roy, Claude
Desjarlais, Georges Desrochers, Vicky Slonosky,
Diane Chaumont - EC-SMC (Qc) Jeanna Goldstein,
Jennifer Milton, Nicolas Major - McGill VTV
Nguyen, Charles Lin - INRS-ETE André St
Hilaire, Bernard Bobée, Taha Ouarda - UQAM
Peter Zwack - CCIS Elaine Barrow - Post-Doc et
étudiants Tan Nguyen (PostDoc) Massoud Hessami
(PostDoc) Mohamed Abul Kashem (PhD)
241st Objective intercompare SDSM LARS-WG for
downscaling extremes (regional case-studies)
5 Régions à étudier (Stat. Downscaling)
1961-1990 Tmin Tmax Tmoy Precipitation tot.
2
1
4
3
5
25(No Transcript)
262nd Objective Develop observed climate indices
used for verification analysis (using STARDEX
software)
27 THANK YOU FOR YOUR ATTENTION !!