Chapter 8 Confidence Intervals - PowerPoint PPT Presentation

1 / 111
About This Presentation
Title:

Chapter 8 Confidence Intervals

Description:

A confidence interval estimate of a parameter consists of: ... P( -1.96 Z 1.96) = 0.95 -1.96 Z 1.96. Z = (X - x) / x Z = (X - ) / / sqrt(n) ... – PowerPoint PPT presentation

Number of Views:30
Avg rating:3.0/5.0
Slides: 112
Provided by: michae1237
Category:

less

Transcript and Presenter's Notes

Title: Chapter 8 Confidence Intervals


1
Chapter 8Confidence Intervals
  • 8.1
  • Confidence Intervals about a Population Mean, ?
    Known

2
  • Recall
  • A population parameter is a characteristic of a
    population.

3
  • Recall
  • A population parameter is a characteristic of a
    population.
  • population mean ?

4
  • Recall
  • A population parameter is a characteristic of a
    population.
  • population mean ?
  • population s.d. ?

5
  • Recall
  • A population parameter is a characteristic of a
    population.
  • population mean ?
  • population s.d. ?
  • It is a fixed but unknown quantity.

6
  • A function of the data sample is called a
    statistic.

7
  • A function of the data sample is called a
    statistic.
  • A statistic is a random quantity because the
    data sample is random.

8
  • A function of the data sample is called a
    statistic.
  • A statistic is a random quantity because the
    data sample is random.
  • Statistics which are used to estimate
    population parameters are called estimators.

9
  • The population mean ? is a parameter.

10
  • The population mean ? is a parameter.
  • The random variable X is an estimator of ?.

11
  • The population mean ? is a parameter.
  • The random variable X is an estimator of ?.
  • The actual value of the sample mean x is a
    point estimate of ?.

12
  • The population mean ? is a parameter.
  • The random variable X is an estimator of ?.
  • The actual value of the sample mean x is a
    point estimate of ?.
  • Sampling error is the error in using x to
    estimate ? due to the random sample.

13
  • The population mean ? is a parameter.
  • The random variable X is an estimator of ?.
  • The actual value of the sample mean x is a
    point estimate of ?.
  • Sampling error is the error in using x to
    estimate ? due to the random sample.
  • Because of the unavoidable sampling error, we
    would like to attach a level of confidence to the
    estimate x

14
  • For continuous random variables,
  • P(X ?) 0

15
  • For continuous random variables,
  • P(X ?) 0
  • Probabilities for continuous random variables
    are expressed in terms of intervals of numbers.

16
P(x1lt X lt x2)
x1
x2
17
  • For continuous random variables,
  • P(X ?) 0
  • Probabilities for continuous random variables
    are expressed in terms of intervals of numbers.
  • Instead of attaching a level of confidence to a
    single point estimate, we attach a level of
    confidence to an interval of numbers containing
    the point estimate.

18
A confidence interval estimate of a parameter
consists of
19
A confidence interval estimate of a parameter
consists of (1) An interval of numbers
20
A confidence interval estimate of a parameter
consists of (1) An interval of numbers (2)
The probability that the interval contains the
unknown parameter.
21
  • The level of confidence in a confidence
    interval is the probability that the parameter is
    contained in the interval.

22
  • The level of confidence in a confidence
    interval is the probability that the parameter is
    contained in the interval.
  • It represents the percentage of intervals that
    would contain the population parameter if samples
    were taken repeatedly.

23
  • For example
  • Construct a 95 confidence interval for the
    mean.

24
  • For example
  • Construct a 95 confidence interval for the
    mean.
  • Of 100 such confidence intervals, about 95 of
    the intervals should contain the population mean.

25
The confidence interval for ? depends on three
things
26
  • The confidence interval for ? depends on three
    things
  • The sample mean x.

27
  • The confidence interval for ? depends on three
    things
  • The sample mean x.
  • The level of confidence

28
  • The confidence interval for ? depends on three
    things
  • The sample mean x.
  • The level of confidence (1 - ?)100

29
  • The confidence interval for ? depends on three
    things
  • The sample mean x.
  • The level of confidence (1 - ?)100
  • The standard deviation of the sample mean

30
  • The confidence interval for ? depends on three
    things
  • The sample mean x.
  • The level of confidence (1 - ?)100
  • The standard deviation of the sample mean

31
  • Suppose a random variable X N(?,?).

32
  • Suppose a random variable X N(?,?).
  • We want to estimate the mean ?.

33
  • Suppose a random variable X N(?,?).
  • We want to estimate the mean ?.
  • We obtain a random sample of size n
  • X1, X2 ,. . . ,Xn

34
  • Suppose a random variable X N(?,?).
  • We want to estimate the mean ?.
  • We obtain a random sample of size n
  • X1, X2 ,. . . ,Xn
  • X (X1 X2 . . . Xn) / n

35
  • Suppose a random variable X N(?,?).
  • We want to estimate the mean ?.
  • We obtain a random sample of size n
  • X1, X2 ,. . . ,Xn
  • X (X1 X2 . . . Xn) / n
  • How precise is our estimate?

36
  • Suppose a random variable X N(?,?).
  • We want to estimate the mean ?.
  • We obtain a random sample of size n
  • X1, X2 ,. . . ,Xn
  • X (X1 X2 . . . Xn) / n
  • How precise is our estimate?
  • In other words, how confident are we that the
    sample mean X is close to ??

37
  • Since X N(?,?)

38
  • Since X N(?,?) X N(?X, ?X)

39
  • Since X N(?,?) X N(?X, ?X)
  • ?X ?

40
  • Since X N(?,?) X N(?X, ?X)
  • ?X ? ?X ? / sqrt(n)

41
  • Since X N(?,?) X N(?X, ?X)
  • ?X ? ?X ? / sqrt(n)
  • Suppose we want to construct a 95 confidence
    interval for the mean.

42
  • Since X N(?,?) X N(?X, ?X)
  • ?X ? ?X ? / sqrt(n)
  • Suppose we want to construct a 95 confidence
    interval for the mean.
  • In other words we want an interval (x1, x2)

43
  • Since X N(?,?) X N(?X, ?X)
  • ?X ? ?X ? / sqrt(n)
  • Suppose we want to construct a 95 confidence
    interval for the mean.
  • In other words we want an interval (x1, x2)
  • P(x1 lt ? lt x2) 0.95

44
  • Z (X - ?x) / ?x

45
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)

46
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95

47
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • -1.96 lt Z lt1.96

48
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • -1.96?/sqrt(n)lt Z?/sqrt(n) lt1.96?/sqrt(n)

49
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • ?-1.96?/sqrt(n)lt ?Z?/sqrt(n)lt ?1.96?/sqrt(n)

50
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • ?-1.96?/sqrt(n)lt ?Z?/sqrt(n)lt ?1.96?/sqrt(n)
  • X ? Z?/sqrt(n)

51
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • ?-1.96?/sqrt(n)lt X lt ?1.96?/sqrt(n)
  • X ? Z?/sqrt(n)

52
  • Z (X - ?x) / ?x
  • Z (X - ?) / ?/ sqrt(n)
  • P( -1.96 lt Z lt 1.96) 0.95
  • P(?-1.96?/sqrt(n)lt X lt ?1.96?/sqrt(n)) 0.95
  • X ? Z?/sqrt(n)

53
95 of all sample means are in the interval
54
(No Transcript)
55
(No Transcript)
56
  • P(?-1.96?/sqrt(n)lt X lt ?1.96?/sqrt(n)) 0.95

57
  • ?-1.96?/sqrt(n)lt X lt ?1.96?/sqrt(n)

58
  • ?-1.96?/sqrt(n)lt X lt ?1.96?/sqrt(n)
  • subtract ? from all terms

59
  • -1.96?/sqrt(n)lt X - ? lt 1.96?/sqrt(n)

60
  • 1.96?/sqrt(n)lt X - ? lt 1.96?/sqrt(n)
  • subtract X from all terms

61
  • -1.96?/sqrt(n) - X lt - ? lt 1.96?/sqrt(n) -
    X

62
  • 1.96?/sqrt(n) - X lt - ? lt 1.96?/sqrt(n) -
    X
  • multiply all terms by -1

63
  • X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n)

64
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95

65
(No Transcript)
66
EXAMPLE Computing a Point Estimate for the
Population Mean
  • Specifications call for the penny to weigh 2.50
    grams.

67
EXAMPLE Computing a Point Estimate for the
Population Mean
  • Specifications call for the penny to weigh 2.50
    grams.
  • The following data represent the weights (in
    grams) of 17 randomly selected pennies minted
    after 1982
  • 2.46 2.47 2.49 2.48 2.50 2.44
    2.46 2.45 2.49
  • 2.47 2.45 2.46 2.45 2.46 2.47
    2.44 2.45

68
EXAMPLE Computing a Point Estimate for the
Population Mean
  • Specifications call for the penny to weigh 2.50
    grams.
  • The following data represent the weights (in
    grams) of 17 randomly selected pennies minted
    after 1982
  • 2.46 2.47 2.49 2.48 2.50 2.44
    2.46 2.45 2.49
  • 2.47 2.45 2.46 2.45 2.46 2.47
    2.44 2.45
  • Estimate the population mean weight of pennies

69
EXAMPLE Computing a Point Estimate for the
Population Mean
  • Specifications call for the penny to weigh 2.50
    grams.
  • The following data represent the weights (in
    grams) of 17 randomly selected pennies minted
    after 1982
  • 2.46 2.47 2.49 2.48 2.50 2.44
    2.46 2.45 2.49
  • 2.47 2.45 2.46 2.45 2.46 2.47
    2.44 2.45
  • Estimate the population mean weight of pennies
  • x 2.464

70
EXAMPLE Computing a Point Estimate for the
Population Mean
  • The population mean is supposed to be 2.50
    grams.

71
EXAMPLE Computing a Point Estimate for the
Population Mean
  • The population mean is supposed to be 2.50
    grams.
  • The sample mean x 2.46.

72
EXAMPLE Computing a Point Estimate for the
Population Mean
  • The population mean is supposed to be 2.50
    grams.
  • The sample mean x 2.46.
  • Is there evidence that the pennies are not being
    manufactured according to specification?

73
EXAMPLE Computing a Point Estimate for the
Population Mean
  • The population mean is supposed to be 2.50
    grams.
  • The sample mean x 2.46.
  • Is there evidence that the pennies are not being
    manufactured according to specification?
  • The weights of the pennies are normally
    distributed with standard deviation ? 0.02.

74
EXAMPLE Computing a Point Estimate for the
Population Mean
  • The population mean is supposed to be 2.50
    grams.
  • The sample mean x 2.46.
  • Is there evidence that the pennies are not being
    manufactured according to specification?
  • The weights of the pennies are normally
    distributed with standard deviation ? 0.02.
  • Additionally, if the pennies are being
    manufactured according to specification, ?
    2.50.

75
  • X weight of penny

76
  • X weight of penny
  • X N(2.50 g, 0.02 g)

77
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17

78
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g

79
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02

80
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95

81
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(2.46-1.96?/sqrt(n) lt ? lt 2.461.96?/sqrt(n))
  • 0.95

82
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(2.46-1.96(.02)/sqrt(n)lt?lt2.461.96(.02)/sqrt(n)
    )
  • 0.95

83
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(2.46-1.96(.005)lt?lt2.461.96(.005))
  • 0.95

84
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(2.46- .010lt?lt2.46.010)
  • 0.95

85
  • X weight of penny
  • X N(2.50 g, 0.02 g)
  • n 17
  • X 2.46 g
  • ? 0.02
  • P(2.45 lt ? lt 2.47)
  • 0.95

86
  • A 95 confidence interval for the mean is
    (2.45g, 2.47g)

87
  • A 95 confidence interval for the mean is
    (2.45g, 2.47g)
  • In other words, 95 of the time the true mean ?
    should lie between 2.45 grams and 2.47 grams.

88
  • A 95 confidence interval for the mean is
    (2.45g, 2.47g)
  • In other words, 95 of the time the true mean ?
    should lie between 2.45 grams and 2.47 grams.
  • Since 2.50 grams is not in this interval, there
    is evidence that the pennies are not being
    manufactured to specification.

89
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95

90
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95
  • Recall that 1.96 z0.025

91
P( Z gt z0.025) 0.025
0.975
0.025

z0.025
92
P( Z gt 1.96) 0.025
0.975
0.025

1.96
93
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95
  • Recall that 1.96 z0.025
  • In general z?/2 is the number such that
  • P(Z gt z?/2 ) ?/2

94
P( Z gt z?/2 ) ?/2
1- ?/2
?/2

z?/2
95
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95
  • Recall that 1.96 z0.025
  • In general z?/2 is the number such that
  • P(Z gt z?/2 ) ?/2
  • P(Z lt z?/2 ) 1 - ?/2

96
P( Z lt -z?/2 ) ?/2
?/2
?/2

z?/2
-z?/2
97
P(-z?/2 lt Z lt z?/2 ) 1 - ?
1- ?
?/2
?/2

z?/2
-z?/2
98
  • P(X -1.96?/sqrt(n) lt ? lt X 1.96?/sqrt(n))
  • 0.95
  • Recall that 1.96 z0.025
  • In general z?/2 is the number such that
  • P(Z gt z?/2 ) ?/2
  • P(Z lt z?/2 ) 1 - ?/2
  • P(- z?/2 lt Z lt z?/2 ) 1 - ?

99
(No Transcript)
100
P(X - z?/2 ?/sqrt(n) lt ? lt X z?/2 ?/sqrt(n))
1 - ?
101
P(X - z?/2 ?/sqrt(n) lt ? lt X z?/2 ?/sqrt(n))
1 - ? A (1 - ?)100 confidence interval
for the mean is given by (X - z?/2 ?/sqrt(n) ,
X z?/2 ?/sqrt(n) )
102
(No Transcript)
103
(No Transcript)
104
EXAMPLE Constructing a Confidence
Interval 2.46 2.47 2.49 2.48 2.50 2.44 2.46 2.
45 2.49 2.47 2.45 2.46 2.45 2.46 2.47 2.44 2.45
105
(No Transcript)
106
Weight (in grams) of Pennies
107
(No Transcript)
108
EXAMPLE Role of Margin of Error Construct a 90
confidence interval for the mean weight of
pennies minted after 1982. Comment on the effect
decreasing the level of confidence has an the
margin of error.
109
EXAMPLE The Role of Sample Size on the Margin
of Error
110
Determining the Sample Size n
111
EXAMPLE Determining Sample Size
Write a Comment
User Comments (0)
About PowerShow.com