CSCI 1302 - PowerPoint PPT Presentation

1 / 23
About This Presentation
Title:

CSCI 1302

Description:

CSCI 1302. Artificial Intelligence. Artificial Intelligence. The Turing Test ... The Turing Test. Proposed by Alan Turing in 1950 ... – PowerPoint PPT presentation

Number of Views:134
Avg rating:3.0/5.0
Slides: 24
Provided by: jonpr
Category:
Tags: csci | alan | boards | image | turing

less

Transcript and Presenter's Notes

Title: CSCI 1302


1
CSCI 1302
  • Artificial Intelligence

2
Artificial Intelligence
  • The Turing Test
  • Image Processing/Analysis
  • State Trees
  • Heuristics
  • Neural Networks
  • Genetic Algorithms

3
The Turing Test
  • Proposed by Alan Turing in 1950
  • If I cant tell its not a human, its human
    enough
  • Interrogator respondent

?
4
Image Processing/Analysis
5
Image Processing
6
ImageAnalysisto Objects
7
Generating 3D Models from 2D Images and Shadow
Processing
8
State Trees
  • Begin with initial state
  • Generate all valid states (given rules)
  • Breadth-first traverse resultant tree, repeating
  • See sample 8-puzzle from 10.3
  • Grow VERY fast
  • Even tic-tac-toe!

9
Game - Defined
  • Search problem with 4 key elements
  • Initial state
  • Operators (legal moves)
  • Terminal test (when is the game over)
  • Utility function (numeric outcome of game)

10
Tic-Tac-Toe
  • Initial state empty board
  • Operators place your mark in empty location
  • Terminal test no empty locations or three
    in-line marks
  • Utility function -1, 0, 1
  • Others for intermediary steps?

11
Initial State
Symmetric boards





Symmetric boards








12
Tic-Tac-Toe TreeStructure
  • How many nodes are theoretically possible in a
    min-max game tree?
  • What is the amortized branching factor?
  • What is the upper bound on the height of the
    tic-tac-toe min-max tree?
  • What is the total number of end states (leaf
    nodes) for a tic-tac-toe min-max tree?
  • Why is tic-tac-toe boring?

13
Min-Max Algorithm
  • Zero-sum game
  • My gain is my opponents loss
  • Max begins
  • Min and Max alternate taking turns
  • Each makes move to benefit self (adversarial)
  • Apply utility function to predictively move
  • Max assumes Min will correctly move
  • Half move ply (a.k.a. level in tree)

14
Min-Max Visualized
3
M1
M2
M3
3
2
2
M23
M33
M13
M21
M22
M31
M32
M11
M12
8
12
3
6
4
2
2
5
14
15
A Complex Example
- - - - - - - - -
X - - - - - - - -
- - - - X - - - -
- X - - - - - - -
X O - - - - - - -
X - O - - - - - -
X - - - O - - - -
X - - - - O - - -
X - - - - - - - O
O X - - - - - - -
- X - O - - - - -
- X - - O - - - -
- X - - - - O - -
- X - - - - - O -
O - - - X - - - -
- O - - X - - - -
X O X - - - - - -
X O - X - - - - -
X O - - X - - - -
X O - - - X - - -
X O - - - - X - -
X O - - - - - X -
X O - - - - - - X
O X - - X - - - -
O - X - X - - - -
O - - - X X - - -
O - - - X - - - X
X O - - X - - - -
- O - X X - - - -
- O - - X - X - -
- O - - X - - X -
O O - - X - - - X
O - - - X O - - X
O - O - X - - - X
O O X - X - - - X
O O - X X - - - X
O O - - X X - - X
O O - - X - X - X
O O - - X - - X X
O O O - X X - - X
O O - O X X - - X
O O - - X X O - X
O O - - X X - O X
O O O - X - X - X
O O - O X - X - X
O O - - X O X - X
O O - - X - X O X
O O O - X - - X X
O O - O X - - X X
O O - - X O - X X
O O O X X - - - X
O O - X X O - - X
O O - X X - O - X
O O - X X - - O X
O O - - X - O X X
O O X O X X - - X
O O - O X X X - X
O O - O X X - X X
O O X - X X O - X
O O - X X X O - X
O O - - X X O X X
O O X - X X - O X
O O - X X X - O X
O O - - X X X O X
O O - O X - X X X
O O X O X - X - X
O O - O X X X - X
O O - O X - X X X
O O - O X - X X X
O O X O X - - X X
O O - O X X - X X
O O - - X O X X X
O O X - X O - X X
O O - X X O - X X
O O X - X - O X X
O O - X X - O X X
O O - - X X O X X
O O X X X - - O X
O O - X X X - O X
O O - X X - X O X
O O X X X - O - X
O O - X X X O - X
O O - X X - O X X
O O X X X O - - X
O O - X X O X - X
O O - X X O - X X
More Here
O O O O X X X - X
O O - O X X X O X
O O X X X O - O X
O O X X X - O O X
O O O X X - X O X
O O - X X O X O X
O O X X X O O - X
O O X X X - O O X
O O O X X - O X X
O O - X X O O X X
O O X X X O O - X
O O X X X O - O X
O O O X X O X - X
O O O X X O - X X
O O - X X O O X X
O O - X X O X O X
O O O O X X - X X
O O - O X X O X X
O O O - X X O X X
O O - O X X O X X
O O O - X X X O X
O O - O X X X O X
O O X O X O X - X
O O X O X - X O X
O O O O X X X - X
O O - O X X X O X
O O X O X - O X X
O O X O X O - X X
O O O O X X - X X
O O - O X X O X X
O O X O X O - X X
O O X - X O O X X
O O O X X O - X X
O O - X X O O X X
O O X O X - O X X
O O X - X O O X X
O O O X X - O X X
O O - X X O O X X
O O O - X X O X X
O O - O X X O X X
O O X X X O O X X
O O X X X O X O X
O O X O X X X O X
O O X O X X X O X
O O X O X O X X X
O O X O X X X O X
O O X O X X X O X
O O X O X O X X X
O O X O X O X X X
O O X X X O O X X
O O X X X O O X X
O O X X X O O X X
O O X X X O O X X
O O X X X O X O X
O O X X X X O O X
O O X X X O X O X
O O X X X O O X X
O O X X X X O O X
O O X X X O O X X
O O X X X O O X X
O O X X X O X O X
16
Min-Max Functions
  • GenerateChildren
  • Takes in a state
  • Returns a collection of valid states based upon
    Operators
  • UtilityFunction
  • Takes in a state
  • Returns a numeric value associated w/ state
  • ChooseMove
  • Takes in state ply-depth (or time)
  • Depth or Breadth (iterative deepening) traversal
  • Returns best move

17
Heuristics
  • Often difficult (too costly) to generate actual
    value for state
  • Approximate quickly
  • Seed with human function
  • Opportunity for machine learning

18
Neural Networks
  • Collection of processing units (units)
  • Model network of neurons
  • Input (set of dendrites)
  • Output (axon)
  • Processing function (synapse chemical makeup)

19
Processing Unit
threshold
1.5
-2
output (0/1)
3
inputs
-1
weights
If unit receives inputs (1,1,0), effective input
is (1-2 13 0-1) 1this is lt threshold
(1.5), so output is 0. If unit receives inputs
(0,1,1), effective input is (0-2 13 1-1)
2this is gt threshold (1.5), so output is 1.
20
Applications
  • Pattern matching
  • C T character pixel distinction from 10.4
  • Associative memory
  • Stable vs. nonstable configurations

21
Artificial Neural Network Associative Memory
Example
Start
Step 1
.5
1
1
.5
.5
1
1
1
1
.5
.5
-1
-1
.5
.5
.5
.5
-1
-1
-1
-1
-1
-1.5
1
1
-1
-1
-1
-1.5
-1.5
1
1
1
1
-1
-1
-1
.5
.5
-1
-1
-1
.5
.5
-1
.5
.5
-1
.5
1
1
.5
.5
1
1
1
1
Step 2
Final
.5
.5
1
1
1
1
.5
.5
.5
.5
-1
-1
-1
-1
-1
-1
-1.5
-1.5
1
1
1
1
-1
-1
-1
-1
.5
.5
-1
.5
.5
-1
.5
.5
1
1
1
1
22
Genetic Algorithms
  • Simulates micro evolution survival of fittest
  • Start with initial strategies
  • Run simulation
  • Mark beneficial results
  • Progress best strategies
  • Possible mutations

23
FIN
Write a Comment
User Comments (0)
About PowerShow.com