Title: CSCI 1302
1CSCI 1302
2Artificial Intelligence
- The Turing Test
- Image Processing/Analysis
- State Trees
- Heuristics
- Neural Networks
- Genetic Algorithms
3The Turing Test
- Proposed by Alan Turing in 1950
- If I cant tell its not a human, its human
enough - Interrogator respondent
?
4Image Processing/Analysis
5Image Processing
6ImageAnalysisto Objects
7Generating 3D Models from 2D Images and Shadow
Processing
8State Trees
- Begin with initial state
- Generate all valid states (given rules)
- Breadth-first traverse resultant tree, repeating
- See sample 8-puzzle from 10.3
- Grow VERY fast
- Even tic-tac-toe!
9Game - Defined
- Search problem with 4 key elements
- Initial state
- Operators (legal moves)
- Terminal test (when is the game over)
- Utility function (numeric outcome of game)
10Tic-Tac-Toe
- Initial state empty board
- Operators place your mark in empty location
- Terminal test no empty locations or three
in-line marks - Utility function -1, 0, 1
- Others for intermediary steps?
11Initial State
Symmetric boards
Symmetric boards
12Tic-Tac-Toe TreeStructure
- How many nodes are theoretically possible in a
min-max game tree? - What is the amortized branching factor?
- What is the upper bound on the height of the
tic-tac-toe min-max tree? - What is the total number of end states (leaf
nodes) for a tic-tac-toe min-max tree? - Why is tic-tac-toe boring?
13Min-Max Algorithm
- Zero-sum game
- My gain is my opponents loss
- Max begins
- Min and Max alternate taking turns
- Each makes move to benefit self (adversarial)
- Apply utility function to predictively move
- Max assumes Min will correctly move
- Half move ply (a.k.a. level in tree)
14Min-Max Visualized
3
M1
M2
M3
3
2
2
M23
M33
M13
M21
M22
M31
M32
M11
M12
8
12
3
6
4
2
2
5
14
15A Complex Example
- - - - - - - - -
X - - - - - - - -
- - - - X - - - -
- X - - - - - - -
X O - - - - - - -
X - O - - - - - -
X - - - O - - - -
X - - - - O - - -
X - - - - - - - O
O X - - - - - - -
- X - O - - - - -
- X - - O - - - -
- X - - - - O - -
- X - - - - - O -
O - - - X - - - -
- O - - X - - - -
X O X - - - - - -
X O - X - - - - -
X O - - X - - - -
X O - - - X - - -
X O - - - - X - -
X O - - - - - X -
X O - - - - - - X
O X - - X - - - -
O - X - X - - - -
O - - - X X - - -
O - - - X - - - X
X O - - X - - - -
- O - X X - - - -
- O - - X - X - -
- O - - X - - X -
O O - - X - - - X
O - - - X O - - X
O - O - X - - - X
O O X - X - - - X
O O - X X - - - X
O O - - X X - - X
O O - - X - X - X
O O - - X - - X X
O O O - X X - - X
O O - O X X - - X
O O - - X X O - X
O O - - X X - O X
O O O - X - X - X
O O - O X - X - X
O O - - X O X - X
O O - - X - X O X
O O O - X - - X X
O O - O X - - X X
O O - - X O - X X
O O O X X - - - X
O O - X X O - - X
O O - X X - O - X
O O - X X - - O X
O O - - X - O X X
O O X O X X - - X
O O - O X X X - X
O O - O X X - X X
O O X - X X O - X
O O - X X X O - X
O O - - X X O X X
O O X - X X - O X
O O - X X X - O X
O O - - X X X O X
O O - O X - X X X
O O X O X - X - X
O O - O X X X - X
O O - O X - X X X
O O - O X - X X X
O O X O X - - X X
O O - O X X - X X
O O - - X O X X X
O O X - X O - X X
O O - X X O - X X
O O X - X - O X X
O O - X X - O X X
O O - - X X O X X
O O X X X - - O X
O O - X X X - O X
O O - X X - X O X
O O X X X - O - X
O O - X X X O - X
O O - X X - O X X
O O X X X O - - X
O O - X X O X - X
O O - X X O - X X
More Here
O O O O X X X - X
O O - O X X X O X
O O X X X O - O X
O O X X X - O O X
O O O X X - X O X
O O - X X O X O X
O O X X X O O - X
O O X X X - O O X
O O O X X - O X X
O O - X X O O X X
O O X X X O O - X
O O X X X O - O X
O O O X X O X - X
O O O X X O - X X
O O - X X O O X X
O O - X X O X O X
O O O O X X - X X
O O - O X X O X X
O O O - X X O X X
O O - O X X O X X
O O O - X X X O X
O O - O X X X O X
O O X O X O X - X
O O X O X - X O X
O O O O X X X - X
O O - O X X X O X
O O X O X - O X X
O O X O X O - X X
O O O O X X - X X
O O - O X X O X X
O O X O X O - X X
O O X - X O O X X
O O O X X O - X X
O O - X X O O X X
O O X O X - O X X
O O X - X O O X X
O O O X X - O X X
O O - X X O O X X
O O O - X X O X X
O O - O X X O X X
O O X X X O O X X
O O X X X O X O X
O O X O X X X O X
O O X O X X X O X
O O X O X O X X X
O O X O X X X O X
O O X O X X X O X
O O X O X O X X X
O O X O X O X X X
O O X X X O O X X
O O X X X O O X X
O O X X X O O X X
O O X X X O O X X
O O X X X O X O X
O O X X X X O O X
O O X X X O X O X
O O X X X O O X X
O O X X X X O O X
O O X X X O O X X
O O X X X O O X X
O O X X X O X O X
16Min-Max Functions
- GenerateChildren
- Takes in a state
- Returns a collection of valid states based upon
Operators - UtilityFunction
- Takes in a state
- Returns a numeric value associated w/ state
- ChooseMove
- Takes in state ply-depth (or time)
- Depth or Breadth (iterative deepening) traversal
- Returns best move
17Heuristics
- Often difficult (too costly) to generate actual
value for state - Approximate quickly
- Seed with human function
- Opportunity for machine learning
18Neural Networks
- Collection of processing units (units)
- Model network of neurons
- Input (set of dendrites)
- Output (axon)
- Processing function (synapse chemical makeup)
19Processing Unit
threshold
1.5
-2
output (0/1)
3
inputs
-1
weights
If unit receives inputs (1,1,0), effective input
is (1-2 13 0-1) 1this is lt threshold
(1.5), so output is 0. If unit receives inputs
(0,1,1), effective input is (0-2 13 1-1)
2this is gt threshold (1.5), so output is 1.
20Applications
- Pattern matching
- C T character pixel distinction from 10.4
- Associative memory
- Stable vs. nonstable configurations
21Artificial Neural Network Associative Memory
Example
Start
Step 1
.5
1
1
.5
.5
1
1
1
1
.5
.5
-1
-1
.5
.5
.5
.5
-1
-1
-1
-1
-1
-1.5
1
1
-1
-1
-1
-1.5
-1.5
1
1
1
1
-1
-1
-1
.5
.5
-1
-1
-1
.5
.5
-1
.5
.5
-1
.5
1
1
.5
.5
1
1
1
1
Step 2
Final
.5
.5
1
1
1
1
.5
.5
.5
.5
-1
-1
-1
-1
-1
-1
-1.5
-1.5
1
1
1
1
-1
-1
-1
-1
.5
.5
-1
.5
.5
-1
.5
.5
1
1
1
1
22Genetic Algorithms
- Simulates micro evolution survival of fittest
- Start with initial strategies
- Run simulation
- Mark beneficial results
- Progress best strategies
- Possible mutations
23FIN