Title: 16.360 Lecture 2
116.360 Lecture 2
- Transmission line parameters, equations
- Wave propagations
- Lossless line, standing wave and reflection
coefficient - Input impedence
- Special cases of lossless line
- Power flow
- Smith chart
- Impedence matching
- Transients on transmission lines
216.360 Lecture 2
- Transmission line parameters, equations
B
A
VBB(t) VAA(t)
VBB(t)
Vg(t)
VAA(t)
L
A
B
VAA(t) Vg(t) V0cos(?t),
Low frequency circuits
VBB(t) VAA(t)
Approximate result
VBB(t) VAA(t-td) VAA(t-L/c)
V0cos(?(t-L/c)),
316.360 Lecture 2
- Transmission line parameters, equations
Recall ??c, and ? 2??
VBB(t) VAA(t-td) VAA(t-L/c)
V0cos(?(t-L/c)) V0cos(?t- 2?L/?),
If ?gtgtL, VBB(t) ? V0cos(?t) VAA(t),
If ?lt L, VBB(t) ?VAA(t), the circuit theory
has to be replaced.
416.360 Lecture 2
- Transmission line parameters, equations
e. g ? 1GHz, L 1cm
Time delay
?t L/c 1cm /3x1010 cm/s 30 ps
?? 2?f?t 0.06 ?
Phase shift
VBB(t) VAA(t)
? 10GHz, L 1cm
Time delay
?t L/c 1cm /3x1010 cm/s 30 ps
?? 2?f?t 0.6 ?
Phase shift
VBB(t) ?VAA(t)
516.360 Lecture 2
- Transmission line parameters
VBB(t) VAA(t-td) VAA(t-L/vp),
- Reflection the voltage has to be treat as wave,
some bounce back
- power loss due to reflection and some other loss
mechanism,
- Dispersion in material, Vp could be different
for different wavelength
616.360 Lecture 2
- Types of transmission lines
- Transverse electromagnetic (TEM) transmission
lines
B
E
a) Coaxial line
b) Two-wire line
c) Parallel-plate line
d) Strip line
e) Microstrip line
716.360 Lecture 2
- Types of transmission lines
- Higher-order transmission lines
a) Optical fiber
b) Rectangular waveguide
c) Coplanar waveguide
816.360 Lecture 2
- Represent transmission lines as parallel-wire
configuration
A
B
Vg(t)
VBB(t)
VAA(t)
B
A
?z
?z
?z
R?z
L?z
L?z
R?z
L?z
R?z
Vg(t)
G?z
C?z
C?z
C?z
G?z
G?z
916.360 Lecture 2
- Transmission line equations
- Represent transmission lines as parallel-wire
configuration
i(z,t)
i(z?z,t)
L?z
R?z
V(z,t)
V(z ?z,t)
G?z
C?z
V(z,t) R?z i(z,t) L?z ? i(z,t)/ ?t V(z
?z,t), (1)
i(z,t) G?z V(z ?z,t) C?z ?V(z ?z,t)/?t
i(z?z,t), (2)
1016.360 Lecture 2
- Transmission line equations
V(z,t) R?z i(z,t) L?z ? i(z,t)/ ?t V(z
?z,t), (1)
-V(z ?z,t) V(z,t) R?z i(z,t) L?z ?
i(z,t)/ ?t
- ?V(z,t)/?z R i(z,t) L ? i(z,t)/ ?t,
(3)
Rewrite V(z,t) and i(z,t) as phasors, for
sinusoidal V(z,t) and i(z,t)
1116.360 Lecture 2
- Transmission line equations
Recall
j?t
di(t)/dt
Re(d i e
)/dt
- ?V(z,t)/?z R i(z,t) L ? i(z,t)/ ?t,
(3)
1216.360 Lecture 2
- Transmission line equations
- Represent transmission lines as parallel-wire
configuration
i(z,t)
i(z?z,t)
L?z
R?z
V(z,t)
V(z ?z,t)
G?z
C?z
V(z,t) R?z i(z,t) L?z ? i(z,t)/ ?t V(z
?z,t), (1)
i(z,t) G?z V(z ?z,t) C?z ?V(z ?z,t)/?t
i(z?z,t), (2)
1316.360 Lecture 4
- Transmission line equations
i(z,t) G?z V(z ?z,t) C?z ?V(z ?z,t)/?t
i(z?z,t), (2)
- i (z ?z,t) i (z,t) G?z V(z ?z ,t)
C?z ? V(z ?z,t)/ ?t
- ? i(z,t)/?z G V(z,t) C ? V(z,t)/ ?t,
(5)
Rewrite V(z,t) and i(z,t) as phasors, for
sinusoidal V(z,t) and i(z,t)
1416.360 Lecture 2
- Transmission line equations
Recall
j?t
dV(t)/dt
Re(d V e
)/dt
- ?i(z,t)/?z G V(z,t) C ? V(z,t)/ ?t,
(6)
1516.360 Lecture 2
- Telegraphers equation in phasor domain
Take d /dz on both sides of eq. (4)
1616.360 Lecture 2
- Telegraphers equation in phasor domain
- d i(z)/dz G V(z) j?C V(z), (7)
substitute (7) to (8)
d²V(z)/dz² (R j?L) (G j?C)V(z),
or
d²V(z)/dz² - (R j?L) (G j?C)V(z) 0,
(9)
d²V(z)/dz² - ?²V(z) 0, (10)
?² (R j?L) (G j?C), (11)
1716.360 Lecture 2
- Telegraphers equation in phasor domain
Take d /dz on both sides of eq. (7)
- d² i(z)/dz² G dV(z)/dz j?C dV(z)/dz,
(12)
1816.360 Lecture 2
- Telegraphers equation in phasor domain
- d i(z)/dz G V(z) j?C V(z), (7)
- d² i(z)/dz² G dV(z)/dz j?C dV(z)/dz,
(12)
substitute (4) to (12)
d² i(z)/dz² (R j?L) (G j?C)i(z),
or
d² i(z)/dz² - (R j?L) (G j?C) i(z) 0,
(9)
d² i(z)/dz² - ?²i(z) 0, (13)
?² (R j?L) (G j?C), (11)
1916.360 Lecture 2
d²V(z)/dz² - ?²V(z) 0, (10)
d² i(z)/dz² - ?²i(z) 0, (13)
? ? j?,
2016.360 Lecture 2
d²V(z)/dz² - ?²V(z) 0, (10)
d² i(z)/dz² - ?²i(z) 0, (13)
? ? j?,
Solving the second order differential equation
-
V(z) V0 (14)
V0
-
i(z) I0 (15)
I0
2116.360 Lecture 2
-
V(z) V0 (14)
V0
-
i(z) I0 (15)
I0
where
and
are determined by boundary conditions.
2216.360 Lecture 2
- Characteristic impedance Z0
recall
(17)
(18)
2316.360 Lecture 5
- Characteristic impedance Z0
(17)
(18)
Define characteristic impedance Z0
recall
Z0 ?
2416.360 Lecture 5
(19)
(20)
2516.360 Lecture 5
R 0 ?, G 0 /?, Z0 50?, ? 20 rad/m, f
700 MHz
L ? and C ?
solution
50?
? ? j?,
? ?
20 rad/m
2616.360 Lecture 5
- lossless transmission line
? ? j?,
(R j?L) (G j?C)
If Rltlt j ?L and G ltlt j?C,
?
? 0
lossless line
?
2716.360 Lecture 2
- lossless transmission line
lossless line
? 0
?
? 2?/?
2816.360 Lecture 2
- For TEM transmission line
LC ??
Vp
?
Vp
?
2916.360 Lecture 5
- Voltage reflection coefficient
VL
-
iL
ZL
-
3016.360 Lecture 5
- Voltage reflection coefficient
-
ZL
Z0
? ?
ZL
Z0
- Current reflection coefficient
- ?? 1, how to prove it?
- If ZL Z0, ? 0. Impedance match, no reflection
from the load ZL.
3116.360 Lecture 2
A
RL 50?
Z0 100?
f 100MHz
A
CL 10pF
z 0
ZL RL j/?CL 50 j159
-
ZL
Z0
?
ZL
Z0
3216.360 Lecture 2
- Standing wave
- Input impedance
j?z
e
V(z) V0 ( )
?
-
i(z)
)
?
V(z) V0
?
3316.360 Lecture 2
j?z
e
V(z) V0 ( )
?
-
i(z)
)
?
V(z) V0
?
3416.360 Lecture 2
V(z) V0 ( )
-
i(z)
)
?
i(z) V0 /Z0
1/2
V0/Z0 1 ?² - 2?cos(2?z ?r)
V(z)
3516.360 Lecture 2
Special cases
- ZL Z0, ? 0
V(z)
V0
2. ZL 0, short circuit, ? -1
1/2
V0 2 2cos(2?z ?)
V(z)
3616.360 Lecture 2
Special cases
3. ZL ?, open circuit, ? 1
1/2
V0 2 2cos(2?z )
V(z)
3716.360 Lecture 2
when 2?z ?r 2n?.
z ??r/4? n?/2
n 1, 2, 3, , if ?r lt0
n 0, 1, 2, 3, , if ?r gt 0
3816.360 Lecture 2
when 2?z ?r (2n1)?.
z ??r/4? n?/2 ?/4
Note
voltage minimums occur ?/4 away from voltage
maximum, because of the 2?z, the special
frequency doubled.
3916.360 Lecture 2
- Voltage standing-wave ratio VSWR or SWR
S 1, when ? 0,
S ?, when ? 1,
4016.360 Lecture 2
Voltage probe
S 3, Z0 50?, ?lmin 30cm, lmin 12cm, ZL?
Solution
?lmin 30cm,? ? 0.6m,
S 3, ? ? 0.5,
-2?lmin ?r -?, ? ?r -36º,
? ?, and ZL.
4116.360 Lecture 2
B
Ii
A
Zg
Vg(t)
VL
Z0
ZL
Vi
l
z 0
z - l
Zin(z)
Z0
Zin(-l)
4216.360 Lecture 2
An example
A 1.05-GHz generator circuit with series
impedance Zg 10-? and voltage source given by
Vg(t) 10 sin(?t 30º) is connected to a load ZL
100 j5-? through a 50-?, 67-cm long lossless
transmission line. The phase velocity is
0.7c. Find V(z,t) and i(z,t) on the line.
Solution
Since, Vp ƒ?, ? Vp/f 0.7c/1.05GHz 0.2m.
? 2?/?, ? 10 ?.
? (ZL-Z0)/(ZLZ0), ? 0.45exp(j26.6º)
Zin(-l)
21.9 j17.4 ?
Zin(-l)
V0exp(-j?l) ?exp(j?l)
Vg
Zin(-l) Zg
4316.360 Lecture 2
short circuit line
B
Ii
A
Zg
Vg(t)
sc
VL
Z0
Zin
ZL 0
l
z 0
z - l
ZL 0, ? -1, S ?
V(z) V0 )
-
-2jV0sin(?z)
i(z)
)
2V0cos(?z)/Z0
V(-l)
Zin
jZ0tan(?l)
i(-l)
4416.360 Lecture 2
short circuit line
V(-l)
Zin
jZ0tan(?l)
i(-l)
- If tan(?l) gt 0, the line appears inductive,
j?Leq jZ0tan(?l),
- If tan(?l) lt 0, the line appears capacitive,
1/j?Ceq jZ0tan(?l),
- The minimum length results in transmission line
as a capacitor
4516.360 Lecture 2
An example
Choose the length of a shorted 50-? lossless line
such that its input impedance at 2.25 GHz is
equivalent to the reactance of a capacitor with
capacitance Ceq 4pF. The wave phase velocity
on the line is 0.75c.
Solution
Vp ?ƒ, ? ? 2?/? 2?ƒ/Vp 62.8 (rad/m)
tan (?l) - 1/?CeqZ0 -0.354,
-1
?l tan (-0.354) n?, -0.34 n?,
4616.360 Lecture 2
open circuit line
B
Ii
A
Zg
Vg(t)
oc
VL
Z0
Zin
ZL ?
l
z 0
z - l
ZL 0, ? 1, S ?
V(z) V0 )
-
i(z)
)
2jV0sin(?z)/Z0
V(-l)
oc
Zin
-jZ0cot(?l)
i(-l)
4716.360 Lecture 2
Application for short-circuit and open-circuit
4816.360 Lecture 2
Line of length l n?/2
tan(?l) tan((2?/?)(n?/2)) 0,
Zin(-l)
ZL
Any multiple of half-wavelength line doesnt
modify the load impedance.
4916.360 Lecture 2
Quarter-wave transformer l ?/4 n?/2
?l (2?/?)(?/4 n?/2) ?/2 ,
-j ?
e
?
)
(1
Zin(-l)
Z0
-j ?
e
-
?
(1
)
Z0²/ZL
5016.360 Lecture 2
An example
A 50-? lossless tarnsmission is to be matched to
a resistive load impedance with ZL 100 ? via a
quarter-wave section, thereby eliminating
reflections along the feed line. Find the
characteristic impedance of the quarter-wave
tarnsformer.
ZL 100 ?
Z01 50 ?
?/4
Zin Z0²/ZL 50 ?
½
½
Z0 (ZinZL) (50100)
5116.360 Lecture 2
Matched transmission line
- ZL Z0
- ? 0
- All incident power is delivered to the load.
5216.360 Lecture 8
- Instantaneous power
- Time-average power
j?z
e
V(z) V0 ( )
?
-
i(z)
)
?
At load z 0, the incident and reflected
voltages and currents
i
i
V V0
i
r
-
r
V V0
i
5316.360 Lecture 2
i
i
i
P(t) v(t) i(t) ReV exp(j?t) Re i
exp(j?t)
ReV0exp(j? )exp(j?t) ReV0/Z0 exp(j?
)exp(j?t)
(V0²/Z0) cos²(?t ? )
r
r
r
P(t) v(t) i(t) ReV exp(j?t) Re i
exp(j?t)
-
-
ReV0exp(j? )exp(j?t) ReV0/Z0 exp(j?
)exp(j?t)
- ?²(V0²/Z0) cos²(?t ? ?r)
5416.360 Lecture 2
Time-domain approach
i
?
T
T
i
Pav
P (t)dt
2?
0
0
(V0²/2Z0)
r
Pav
-?² (V0²/2Z0)
Net average power
i
r
Pav
Pav
Pav
(1-?²) (V0²/2Z0)
5516.360 Lecture 2
Phasor-domain approach
Pav
(½)ReV i
i
Pav (1/2) ReV0 V0 /Z0
(V0²/2Z0)
r
Pav
-?² (V0²/2Z0)
Pav
(1-?²) (V0²/2Z0)