Title: Putting Objects in Perspective
1Putting Objects in Perspective
- Derek Hoiem
- Alexei A. Efros
- Martial Hebert
- Carnegie Mellon University
- Robotics Institute
2Understanding an Image
3Today Local and Independent
4What the Detector Sees
5Local Object Detection
True Detection
False Detections
Missed
Missed
True Detections
Local Detector Dalal-Triggs 2005
6Work in Context
- Image understanding in the 70s
Guzman (SEE) 1968 Hansen Riseman (VISIONS)
1978 Barrow Tenenbaum 1978 Yakimovsky Feldman
1973
Brooks (ACRONYM) 1979 Marr 1982 Ohta Kanade 1973
- Recent work in 2D context
Kumar Hebert 2005 Torralba, Murphy, Freeman
2004 Fink Perona 2003
He, Zemel, Cerreira-Perpiñán 2004 Carbonetto,
Freitas, Banard 2004 Winn Shotton 2006
7Real Relationships are 3D
Close
Not Close
8Recent Work in 3D
Han Zu 2003
Oliva Torralba 2001
Torralba, Murphy Freeman 2003
Han Zu 2005
9Objects and Scenes
Hock, Romanski, Galie, Williams 1978
- Biedermans Relations among Objects in a
Well-Formed Scene (1981)
- Position
- Interposition
- Likelihood of Appearance
10Contribution of this Paper
Hock, Romanski, Galie, Williams 1978
- Biedermans Relations among Objects in a
Well-Formed Scene (1981)
- Position
- Interposition
- Likelihood of Appearance
11Object Support
12Surface Estimation
Image
Support
Vertical
Sky
V-Center
V-Left
V-Right
V-Porous
V-Solid
Hoiem, Efros, Hebert ICCV 2005 Software
available online
13Object Size in the Image
Image
World
14Object Size ? Camera Viewpoint
Input Image
Loose Viewpoint Prior
15Object Size ? Camera Viewpoint
Input Image
Loose Viewpoint Prior
16Object Size ? Camera Viewpoint
Object Position/Sizes
Viewpoint
17Object Size ? Camera Viewpoint
Object Position/Sizes
Viewpoint
18Object Size ? Camera Viewpoint
Object Position/Sizes
Viewpoint
19Object Size ? Camera Viewpoint
Object Position/Sizes
Viewpoint
20What does surface and viewpoint say about objects?
Image
P(object)
21What does surface and viewpoint say about objects?
Image
P(surfaces)
P(viewpoint)
P(object surfaces, viewpoint)
P(object)
22Scene Parts Are All Interconnected
Objects
3D Surfaces
Camera Viewpoint
23Input to Our Algorithm
Surface Estimates
Viewpoint Prior
Object Detection
Local Car Detector
Local Ped Detector
Surfaces Hoiem-Efros-Hebert 2005
Local Detector Dalal-Triggs 2005
24Scene Parts Are All Interconnected
Objects
3D Surfaces
Viewpoint
25Our Approximate Model
Objects
3D Surfaces
Viewpoint
26Inference over Tree Easy with BP
Viewpoint
?
Local Object Evidence
Local Object Evidence
Objects
...
o1
on
Local Surface Evidence
Local Surface Evidence
Local Surfaces
s1
sn
27Viewpoint estimation
Viewpoint Prior
Viewpoint Final
Likelihood
Likelihood
Horizon
Height
Horizon
Height
28Object detection
Car TP / FP Ped TP / FP
Initial (Local)
Final (Global)
Car Detection
4 TP / 1 FP
4 TP / 2 FP
Ped Detection
4 TP / 0 FP
3 TP / 2 FP
Local Detector Dalal-Triggs 2005
29Experiments on LabelMe Dataset
- Testing with LabelMe dataset 422 images
- 923 Cars at least 14 pixels tall
- 720 Peds at least 36 pixels tall
30Each piece of evidence improves performance
Pedestrian Detection
Car Detection
Local Detector from Murphy-Torralba-Freeman 2003
31Can be used with any detector that outputs
confidences
Car Detection
Pedestrian Detection
Local Detector Dalal-Triggs 2005 (SVM-based)
32Accurate Horizon Estimation
Dalal- Triggs 2005
Murphy-Torralba-Freeman 2003
Horizon Prior
Median Error
8.5
4.5
3.0
90 Bound
33Qualitative Results
Car TP / FP Ped TP / FP
Initial 2 TP / 3 FP
Final 7 TP / 4 FP
Local Detector from Murphy-Torralba-Freeman 2003
34Qualitative Results
Car TP / FP Ped TP / FP
Initial 1 TP / 14 FP
Final 3 TP / 5 FP
Local Detector from Murphy-Torralba-Freeman 2003
35Qualitative Results
Car TP / FP Ped TP / FP
Initial 1 TP / 23 FP
Final 0 TP / 10 FP
Local Detector from Murphy-Torralba-Freeman 2003
36Qualitative Results
Car TP / FP Ped TP / FP
Initial 0 TP / 6 FP
Final 4 TP / 3 FP
Local Detector from Murphy-Torralba-Freeman 2003
37Summary Future Work
Ped
Ped
Car
- Reasoning in 3D
- Object to object
- Scene label
- Object segmentation
38Conclusion
- Image understanding is a 3D problem
- Must be solved jointly
- This paper is a small step
- Much remains to be done
39Thank you
40(No Transcript)
41A Return to Scene Understanding
Ohta Kanade 1978
- Guzman (SEE), 1968
- Hansen Riseman (VISIONS), 1978
- Barrow Tenenbaum 1978
- Brooks (ACRONYM), 1979
- Marr, 1982
- Ohta Kanade, 1978
- Yakimovsky Feldman, 1973
42Images