Formal Methods for Security Protocols - PowerPoint PPT Presentation

1 / 26
About This Presentation
Title:

Formal Methods for Security Protocols

Description:

Jeeves. Yves. take.Alice.y. fake.x.Bob. send. receive. learn. say. receive. receive ... b e Agent, m e S ftp.a.Jeeves.m - Server(S) 7 June 2002 - Lecture 4 ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 27
Provided by: catus
Category:

less

Transcript and Presenter's Notes

Title: Formal Methods for Security Protocols


1
Formal Methods for Security Protocols
  • Catuscia Palamidessi
  • Penn State university, USA

2
Security Protocols
  • Contents of previous lectures
  • Brief introduction to security protocols
  • Brief introduction to Cryptographic methods
  • Vulnerability of Security protocols
  • Introduction to CSP
  • Modeling security protocols in CSP
  • principals, server, intruder
  • Expressing security properties in CSP
  • anonymity
  • Verification of security protocols using FDR
  • example (of anonymity) Dining cryptographers

3
Expressing Security Properties in CSP
  • Security properties the goals that a protocol is
    meant to satisfy, relatively to specific kinds
    and levels of threat the intruders and their
    capabilities
  • We will consider the following security
    properties
  • Secrecy
  • No information leakage
  • Authentication
  • No falsification of identity
  • Non-repudiation
  • Evidence of the involvement of the other party
  • Anonymity
  • Protecting the identity of agents wrt particular
    events

4
Secrecy and authentication
  • Safety properties a certain bad thing should not
    happen
  • Explicit annotations In the CSP approach, these
    properties are defined by enhancing the code of
    the processes with explicit signal claiming the
    success of the protocol wrt the intended
    property
  • Secrecy Claim_secret. m
  • Information m has not become known to the
    intruder
  • Authentication Run with A , Commit with B
  • The matching of these two events guarantees
    identities of A and B

5
Secrecy and authentication
B
A
B
A
Intr
Intr
Protocol run
Run with A
Claim_Secret.m
Commit with B
6
Example The Yahalom Protocol
  • The protocol
  • Message 1 a -gt b a.na
  • Message 2 b -gt s b.a.na.nbServerKey(b)
  • Message 3 s -gt a b.kab.na.nbServerKey(a)
    a.kabServerKey(b)
  • Message 4 a -gt b a.kabServerKey(b) .nbkab
  • Authentication of the participants
  • Kab should remain secret
  • We may require secrecy also on nb

7
Example Secrecy in the Yahalom protocol
  • CSP description of the two parties - Original
  • Initiator(a,na )
  • env?b Agent
  • g send.a.b.a.na
  • g (receive.J.ab. kab.na.nbServerKey
    (a) .m
  • kab e Key g
    send.a.b.m.nbkab
  • nb e Nonce g
    Session(a,b,kab,na,nb) )
  • m e T
  • Responder(b,nb )
  • (receive.a.b.a.na g send.b.J.b
    .a.na.nbServerKey(b)
  • kab e Key g receive.a.b.a.
    kabServerKey(b) .nbkab
  • nb e Nonce g Session(b,a,kab,na,nb) )
  • m e T

8
Example Secrecy in the Yahalom protocol
  • CSP description of the two parties - Enhanced
  • Initiator(a,na )
  • env?b Agent
  • g send.a.b.a.na
  • g (receive.J.ab. kab.na.nbServerKey
    (a) .m
  • kab e Key g
    send.a.b.m.nbkab
  • nb e Nonce g
    signal.Claim_Secret.a.b.kab
  • m e T g
    Session(a,b,kab,na,nb) )
  • Responder(b,nb )
  • (receive.a.b.a.na g send.b.J.b
    .a.na.nbServerKey(b)
  • kab e Key g receive.a.b.a.
    kabServerKey(b) .nbkab
  • nb e Nonce g signal.Claim_Secret.a.b.kab
  • m e T g Session(b,a,kab,na,nb) )

9
Example Secrecy in the Yahalom protocol
  • CSP description of the server
  • Server(J,kab )
  • (receive.b.J.b .a.na.nbServerKey(b)
  • A,B e Agent g send.J.a. b.
    kab.na.nbServerKey(a) .a.kabServerKey(b)
  • Nb ,nb e Nonce g Server(J,ks ) )
  • Server(J) Server(J,kab )
  • kab e KeysServer

10
Example Secrecy in the Yahalom protocol
  • CSP description of the intruder
  • Intruder(X) learn ? m messages
    gIntruder(close(X U m)
  • say ! m X /\
    messages gIntruder(X)
  • Close(X) represents all the possible information
    that the attacker can infer from X. Typically we
    assume
  • k , m - mk
  • mk , k-1 - m
  • ltx1,,xngt - xi
  • x1 ,, xn - ltx1,,xngt

11
Example Secrecy in the Yahalom protocol
  • Initiator(Alice,nA) S Responder(Bob,nB) S
    Server(Jeeves) S Intruder(f) S
  • S fake,take/receive,send
  • S take.x.y/learnfake.x.y, leak/say

Jeeves
receive
send
Alice
Bob
receive
send
send
receive
fake.x.Bob
take.Alice.y
learn
say
Yves
leak
12
Example Secrecy in the Yahalom protocol
  • The property to be verified
  • Signal.Claim_Secret.a.b.m occurs in tr
  • a
  • not(leak.m occurs in tr)
  • for all traces tr belonging to Traces(System)
  • this property can be verified automatically by
    checking the traces

13
Authentication
  • The CSP approach is based on inserting signals
  • Running.a.b (in as protocol)
  • Agent a is executing a protocol run apparently
    with b
  • Commit.b.a (in bs protocol)
  • Agent b has completed a protocol run apparently
    with a
  • Authentication is achieved if Running.a.b always
    precedes Commit.b.a in the traces of the system
  • Weaker or stronger forms of authentication can be
    achieved by variations of the parameters of these
    signals and the constraints on them

14
Authentication in the Yahalom Protocol
  • The Yahalom Protocol aims at providing
    authentication of both parties authentication
    of the initiator to the responder, and viceversa
  • We will analyze the two authentication properties
    separately
  • This requires two separate enhancements of the
    protocol

15
Yahalom authentication of initiator
  • CSP description of the two parties - Enhanced
  • Initiator(a,na )
  • env?b Agent
  • g send.a.b.a.na
  • g (receive.J.ab. kab.na.nbServerKey
    (a) .m
  • kab e Key g
    signal.Running_Initiator.a.b.na.nb.kab
  • nb e Nonce g
    send.a.b.m.nbkab
  • m e T g
    Session(a,b,kab,na,nb) )
  • Responder(b,nb )
  • (receive.a.b.a.na g send.b.J.b
    .a.na.nbServerKey(b)
  • kab e Key g receive.a.b.a.
    kabServerKey(b) .nbkab
  • nb e Nonce g signal. Commit_Responder.b.a.na.nb.k
    ab
  • m e T g Session(b,a,kab,na,nb) )

16
Yahalom authentication of initiator
Initiatora
Responderb
Server
  • a.na
  • b.a.na.nbServerKey(b)
  • b.kab.na.nbServerKey(a) a.kabServerKey(b)
  • Run.Init.a.b.na.nb.kab
  • a.kabServerKey(b) .nbkab
  • Comm.Resp.b.a.na.nb.kab

17
Yahalom authentication of initiator
  • The property to be verified
  • signal. Running_Initiator.a.b.na.nb.kab
  • precedes
  • signal.Commit_Responder.b.a.na.nb.kab
  • in all the traces in Traces(System)
  • Again, this property can be verified
    automatically by checking the traces

18
Yahalom authentication of responder
  • CSP description of the two parties - Enhanced
  • Initiator(a,na )
  • env?b Agent
  • g send.a.b.a.na
  • g (receive.J.ab. kab.na.nbServerKey
    (a) .m
  • kab e Key g
    send.a.b.m.nbkab
  • nb e Nonce g
    signal.Commit_Initiator.a.b.na.nb.kab
  • m e T g
    Session(a,b,kab,na,nb) )
  • Responder(b,nb )
  • (receive.a.b.a.na g send.b.J.b
    .a.na.nbServerKey(b)
  • kab e Key g signal.Running_Responder.b.
    a.na.nb
  • nb e Nonce g receive.a.b.a. kabServerKey(b)
    .nbkab
  • m e T g Session(b,a,kab,na,nb) )

19
Yahalom authentication of responder
Server
Responderb
Initiatora
  • a.na
  • Run_Resp.b.a.na.nb.
  • b.a.na.nbServerKey(b)
  • b.kab.na.nbServerKey(a) a.kabServerKey(b)
  • a.kabServerKey(b) .nbkab
  • Comm.Init.a.b.na.nb.kab

20
Yahalom authentication of responder
  • The property to be verified
  • signal. Running_Responder.b.a.na.nb
  • precedes
  • signal.Commit_Initiator.a.b.na.nb.kab
  • in all the traces in Traces(System)
  • Again, this property can be verified
    automatically by checking the traces

21
Authentication
  • A similar analysis was done by Gavin Lowe for the
    Needham-Schoeder Public Key protocol
  • Authentication of responder Yes
  • Authentication of initiator No
  • There is a trace which contains
    signal.Commit_Responder.b.a.
  • preceded only by
  • signal.Running_Initiator.a.i

22
Non-repudiation
  • Goal to provide the parties of an interaction
    with evidence so that later they cannot deny
    having participated
  • Example The Zhou-Gollmann protocol
  • Message 1 a -gt b fNRO .b.n.cSka
  • Message 2 b -gt a fNRR .a.n.cSkb
  • Message 3 a -gt j fSUB .b.n.kSka
  • Message 4 b lt-gt j fCON .a.b.n.kSkj
  • Message 5 a lt-gt j fCON .a.b.n.kSkj
  • c mk where m is the message to be transmitted
  • a and b are the parties, j is the trusted server
  • fNRO , fNRR, etc. are flags identifying the
    steps. n is a nonce
  • Ska, Skb, etc. are signature keys known only to
    their owners
  • a can prove that b has got the message by
    presenting
  • fNRR .a.n.cSkb and fCON .a.b.n.kSkj

23
The Zhou-Gollmann protocol
  • Non-Repudiation of Recipient
  • a can prove that b has got the message by
    presenting
  • fNRR.a.n.cSkb and fCON .a.b.n.kSkj
  • Non-Repudiation of Origin
  • b can prove that a has sent the message by
    presenting
  • fNRO.b.n.cSka and fCON .a.b.n.kSkj

24
CSP analysis of Non-Repudiation
  • Specification of the Zhou-Gollmann protocol in
    CSP
  • Agenta(S)
  • b e Agent, m e S send.a.b.m -gt Agenti(S)
  • receive.a.b?m -gt Agenta(close(S U m))
  • ftp.a.Jeeves?m -gt Agenta(close(S U m))
  • m e S evidence.a.m -gt Agenti(S)
  • Close(S) represent the capability of inferring
    new information
  • Server(S)
  • receive.a.Jeeves?. fSUB .b.n.kSka
  • -gt Server(S U fCON
    .a.b.n.kSkj)
  • b e Agent, m e S ftp.a.Jeeves.m -gt
    Server(S)

25
The Zhou-Gollmann protocol in CSP
evidence.a
evidence.b
a
b
ftp.a
ftp.b
send..b
send..a
J
receive..b
receive..a
receive..J
send..J
medium
26
Analysis of the Zhou-Gollmann protocol
  • Non-Repudiation of Recipient
  • evidence.a.fNRR.a.n.cSkb in tr a b sent
    (fNRR.a.n.c) for every trace tr
  • evidence.a.fCON.a.b.n.kSkj in tr a
    receive.a.j.fCON.a.b.n.kSkj in tr for every
    trace tr
  • Non-Repudiation of Origin
  • evidence.b.fNRO.b.n.cSka in tr a a sent
    (fNRO.b.n.c) for every trace tr
  • evidence.b.fCON.a.b.n.kSkj in tr a a sent
    (fSUB.b.n.k) for every trace tr
  • Again, these properties on traces can be proven
    automatically
Write a Comment
User Comments (0)
About PowerShow.com