Title: CS 547: Lecture 25
1CS 547 Lecture 25
- Continuous-time Markov Chains
- Mary K. Vernon
- Fall 2003
2Todays Outline
- Formal definition of CTMCs
- Transient solution PX(t)k
- Steady state solution
- Applications
- M/M/1 queue
- Machine repair model
- Reference AA 4.3, 5.0-5.2 LK1 2.4, 3.1
3Continuous Time Markov Chains
- Definition a stochastic process X(t), t?T is
a Markov process if ?t1,t2,,tn1, t1 ?t2?
?tn1 and ? x1,x1,, xn1, - PX(tn1) ? xn1 X(t1) ? x1, X(t2) ? x2, ,
X(tn) ? xn - ? PX(tn1) ? xn1 X(tn) ? xn
- Continuous-time Markov chain (CTMC)
- state space is discrete, T is continuous
- e.g., Poisson counting process, or Q(t) in M/M/1
queue - Goal derive Pk(t) ? PX(t) ? j and/or ?j ?
PX(t) j - Notation pi,,j (t1,t2) PX(t2) ? j X(t1) ?
i
4CTMC Graphical Representation
- state transition rates
, i ? j - time-homogeneous qi,j ? qi,j(t)
- pi,,j(t,th) ? qi,jh o(h), i ? j
- pi,i(t,th) ? 1 ? (
qi,j)h o(h) - e.g., X(t) is the queue length of an M/M/1 queue
at time t - qi,i1 ? ?
- qi,i-1 ? ?
State transitions are labelled with the state
transition rate
5CTMC Pk(t)
- pi,j(t1,t2)? PX(t2)?j X(t1) ? i
P(t) ? PX(t) ? j
theorem of total probability
where Qi,i ? ? qi,j , i.e., pi,,i(t,th) ? 1
qi,ih o(h) Qi,j ? qi,j , i?j
6CTMC Pk(t)
- pi,j(t1,t2)? PX(t2)?j X(t1) ? i
P(t) ? PX(t) ? j
s ? t
or
thus, and completely define a
time-homogeneous
CTMC
7CTMC Example Pk(t)
- X(t) queue length of M/M/1 queue at time t
, k ? 1
solution for Pk(t) LK1 pp. 74-77 (very
complex)
8CTMC Example Pk(t)
- X(t) number of machines that are operational at
time t
Solution for P0(t) AA Example 4.3.3, pp.
217-219
9CTMC PX(t) j
This equilibrium distribution or stationary
distribution exists and is independent of the
initial state if the DPMC is irreducible is
non-trivial if the CTMC is irreducible
recurrent non-null in this case,
and
10CTMC Example ?k
- X(t) queue length of M/M/1 queue at time t
irreducible
0 ? - flux out of state k flux into
state k
0 ? -??0 ??1 0 ? -(? ?)?1 ??0 ??2
?1 ? (?/?) ?0 ?2 ? (?/?)?1 ? (?/?)2 ?0
?k ? (?/?)k ?0
?0 1 (?/?)k ? ?0 Uk ? 1
?0 1 ? U?1 ? 1, ? ? ? or U ? 1
?0 ? 1 ? U, ?k ? (1 ? U)Uk
EQ