CS 547: Lecture 25 - PowerPoint PPT Presentation

About This Presentation
Title:

CS 547: Lecture 25

Description:

Definition: a stochastic process {X(t), t T} is a Markov process if t1,t2,...,tn 1, t1 ... k 1. solution for Pk(t): LK1 pp. 74-77 (very complex) 8. CTMC Example: Pk(t) ... – PowerPoint PPT presentation

Number of Views:11
Avg rating:3.0/5.0
Slides: 11
Provided by: pagesC
Category:

less

Transcript and Presenter's Notes

Title: CS 547: Lecture 25


1
CS 547 Lecture 25
  • Continuous-time Markov Chains
  • Mary K. Vernon
  • Fall 2003

2
Todays Outline
  • Formal definition of CTMCs
  • Transient solution PX(t)k
  • Steady state solution
  • Applications
  • M/M/1 queue
  • Machine repair model
  • Reference AA 4.3, 5.0-5.2 LK1 2.4, 3.1

3
Continuous Time Markov Chains
  • Definition a stochastic process X(t), t?T is
    a Markov process if ?t1,t2,,tn1, t1 ?t2?
    ?tn1 and ? x1,x1,, xn1,
  • PX(tn1) ? xn1 X(t1) ? x1, X(t2) ? x2, ,
    X(tn) ? xn
  • ? PX(tn1) ? xn1 X(tn) ? xn
  • Continuous-time Markov chain (CTMC)
  • state space is discrete, T is continuous
  • e.g., Poisson counting process, or Q(t) in M/M/1
    queue
  • Goal derive Pk(t) ? PX(t) ? j and/or ?j ?
    PX(t) j
  • Notation pi,,j (t1,t2) PX(t2) ? j X(t1) ?
    i

4
CTMC Graphical Representation
  • state transition rates
    , i ? j
  • time-homogeneous qi,j ? qi,j(t)
  • pi,,j(t,th) ? qi,jh o(h), i ? j
  • pi,i(t,th) ? 1 ? (
    qi,j)h o(h)
  • e.g., X(t) is the queue length of an M/M/1 queue
    at time t
  • qi,i1 ? ?
  • qi,i-1 ? ?

State transitions are labelled with the state
transition rate
5
CTMC Pk(t)
  • pi,j(t1,t2)? PX(t2)?j X(t1) ? i
    P(t) ? PX(t) ? j

theorem of total probability
where Qi,i ? ? qi,j , i.e., pi,,i(t,th) ? 1
qi,ih o(h) Qi,j ? qi,j , i?j
6
CTMC Pk(t)
  • pi,j(t1,t2)? PX(t2)?j X(t1) ? i
    P(t) ? PX(t) ? j

s ? t
or
thus, and completely define a
time-homogeneous
CTMC
7
CTMC Example Pk(t)
  • X(t) queue length of M/M/1 queue at time t

, k ? 1
solution for Pk(t) LK1 pp. 74-77 (very
complex)
8
CTMC Example Pk(t)
  • X(t) number of machines that are operational at
    time t

Solution for P0(t) AA Example 4.3.3, pp.
217-219
9
CTMC PX(t) j
This equilibrium distribution or stationary
distribution exists and is independent of the
initial state if the DPMC is irreducible is
non-trivial if the CTMC is irreducible
recurrent non-null in this case,
and
10
CTMC Example ?k
  • X(t) queue length of M/M/1 queue at time t

irreducible
0 ? - flux out of state k flux into
state k
0 ? -??0 ??1 0 ? -(? ?)?1 ??0 ??2

?1 ? (?/?) ?0 ?2 ? (?/?)?1 ? (?/?)2 ?0
?k ? (?/?)k ?0
?0 1 (?/?)k ? ?0 Uk ? 1
?0 1 ? U?1 ? 1, ? ? ? or U ? 1
?0 ? 1 ? U, ?k ? (1 ? U)Uk
EQ
Write a Comment
User Comments (0)
About PowerShow.com