Title: QCD in the Coulomb gauge II
1QCD in the Coulomb gauge II
- The many body problem
- Gribov-Zwanziger confinement
- Mean-field confinement
2Coulomb gauge Hamiltonian
3Gribov ambiguities
4We will assume Aai(x) are in the F.M.R.
Approximation scheme ? physics input
- Physics
- Helps determining optimal single particle basis
- which correlations
are important
5In QCD
qi ? fabric in 3-space whose (free) excitations
(phonons) have properties
of elementary particles
Weak coupling free quark and gluon, plane wave
basis of single particle states
Strong coupling Constituent quarks and gluons,
solitons, flux tubes, L
6Particle vs. field representation
Particle representation
7Field representation
Harmonic oscillator states ? complete basis !
Make w(k) a variation parameter and use this
basis to diagonalize full H
8(No Transcript)
9A somewhat different approach (A.Szczepaniak,
E.Swanosn, Phys.Rev.D65025012,2002 )
A complete basis ? s.h.o (functional space) wave
function
with w as variational paramters ( there may be
some leackage outside the horizon)
w(k) ¹ k ? a(k) ¹ free qluon operators
10Confinement from the mean field approach
Confinement ? ? gluon self-interactions ? ?
triple-gluon-vertex
Tree
1- loop
Low momentum dominated by ring diagrams
If in the medium (QCD vacuum) w(k)k then a(k)
1/k2 or V(k) 1/k4
/
11(No Transcript)
12Solving the Shrodinger eq. in QCD HYi EYi
Static system
h.o. trial wave fnctional
gluon mass gap eq.
Rainbow-ladder series ? 2 coupled integral
equations
13ladder
rainbow
1)
d(p)
1
p
-1
-
2)
p
w(p)
w(p)
p2/w(p)
3)
f(p)
g
g
14(No Transcript)
15A somewhat different approach (A.Szczepaniak,
E.Swanosn, Phys.Rev.D65025012,2002 )
A complete basis ? s.h.o (functional space) wave
function
with w as variational paramters ( there may be
some leackage outside the horizon)
w(k) ¹ k ? a(k) ¹ free qluon operators