beam line project - PowerPoint PPT Presentation

1 / 28
About This Presentation
Title:

beam line project

Description:

beam line project. g-2 is statistics limited. g-2 needs more muons. goal x4 muons ... electronic notebook at http://zero.npl.uiuc.edu:8081. V line V target to g-2 ring ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 29
Provided by: debe54
Category:
Tags: beam | line | project | ptd

less

Transcript and Presenter's Notes

Title: beam line project


1
beam line project
g-2 is statistics limited g-2 needs more
muons goal x4 muons
  • items under consideration
  • target
  • capture optics
  • decay channel
  • backward decays
  • inflector

electronic notebook at http//zero.npl.uiuc.edu80
81
2
V line V target to g-2 ring
3
6 dipoles 29 quads
4
V line V target to Q10
QQDDQQQQDD QQQQ
5
V line Q11 to Q 20
Q Q Q Q Q Q Q Q Q Q D F D F D F D F D F
6
V line D5 to g-2 ring
DQQ Q QQD QQQQ
7
(No Transcript)
8
inflector and storage ring apertures
downstream view
storage ring aperture
inflector aperture
9
TRANSPORT formalism I
first order TRANSPORT linearizes equations of
motion
every beam line element is represented by a matrix
assuming a median plane transverse motions are
uncoupled
10
TRANSPORT formalism II
beam is represented by ellipse in phase space
TRANSPORT of ellipse via same R matrix
useful to follow ellipse or beam envelope
11
(No Transcript)
12
TRANSPORT formalism III
beam ellipse can be expressed in terms of CSL
parameters often called accelerator notation
important relations
13
Transport calculation V target to g-2
ring parameters from btraf g2pimu.inp beam
envelope
non-bend (yz) plane (vertical)
FODO lattice
bend (xz) plane (horizontal)
14
accelerator physics notation Ifor FODO lattice
15
accelerator physics notation I FODO lattice
Transport matrix
F O D O
16
accelerator physics notation IIfor FODO lattice
m phase advance
17
accelerator physics notation IIIfor FODO
latticeCSL parameters(i.e. values of a, b, g
at F)
18
accelerator physics notation IVfor FODO
lattice beta function
gradient length rigidity
19
max and min of beta function vs quad field
L 12.446 m forward 3.15 GeV/c backward 5.22
GeV/c
g-2 operating point
20
effect of increasing number of quads, I
0.660 m
12.446 m
double
triple
quadruple
21
effect of increasing number of quads, II
Suppose
then
beam smaller
and
divergence larger
22
phase space calculation of effect of change in
beta function Morse g-2 448
X2 quads
X4 quads
23
Transport calculation V target to g-2 ring btraf
g2pi.inp with doubled lattice
24
muon lab angle vs muon lab momentum
/- 0.5
1 mr
g-2 operating point
x at every five degrees in com
25
pion momentum, stored muonsoperating point
p? / p? e/SEC F? A
1.005 179 80 0.22
1.010 77 30 0.26
1.015 37 6.5 0.30
1.017 30 1.6 0.30
1.020 22 0.9 0.30
g-2 operating point 4 mr
source PRD draft
26
momentum ellipses for for/backward decays
pfor 3.15 GeV/c
pfor 5.22 GeV/c
pmagic
27
what changes for backward decays?simple scaling
5.22/3.11
28
possible factors improvement
increase number of quads in lattice x2 backward
decays x4 open up inflector x1.7 goal x4 muons
Write a Comment
User Comments (0)
About PowerShow.com