Title: Linear systems
1Linear systems FilteringBased onThe
Scientist and Engineer's Guide to Digital Signal
Processingby Steven W. Smith(http//www.dspguid
e.com/)
2Topics
- Linear systems
- Convolution
- Filtering
3Linear systems
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
Linear system
Complicated problem
Superposition
Linear system
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
4Linear systems
Signals and systems
Analog elctronics
Input
Output
Computer programs
5Linear systems
Reasons for understanding a system
Input
Output
System
gt Compensate for non-ideal transmission
6Linear systems
Reasons for understanding a system
System
Input
Output
gt Find system transmitted signal -gt received
signal
7Linear systems
Linearity
- Homogeneity xn -gt yn gt kxn -gt kyn
gt Change in the input signal's amplitude -gt
corresponding change in the output signal's
amplitude
Power dissipation P I2R IV V2/R µ V2 gt
not homogenousgt not linear
Resistor
Ohms law I V/R or J sE
8Linear systems
Linearity
x1n -gt y1n x2n -gt y2n gt x1n x2n
-gt y1n y2n
gt The added signals pass through the system
without interacting
9Linear systems
Linearity
gt The added signals pass through the system
without interacting
10Linear systems
Linearity
- Homogeneity
- Additivity
- (Shift invariance) xn -gt yn gt xns -gt
yns
11Linear systems
Static linearity
Static response of a linear systemThe output is
the input multiplied by a constant
12Linear systems
Memoryless systems
Memoryless system output depends only on the
present state of the input, and not on its
history.
13Linear systems
Linearity
- Static linearity
- Memorylessness
gt Linear system
DC non-linear
Hysterisis
14Linear systems
Examples
Linear systems
- Wave propagation
- Electrical and electronic circuits
- Differentiation and integration
- Convolution
Non-linear systems
- Intensity of light transmitted through material
Lambers law - Multiplication
- Saturation
- Systems with a threshold
15Linear systems
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
Linear system
Complicated problem
Superposition
Linear system
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
16Linear systems
Superposition and decomposition
x0n
xNn
x2n
x1n
..........
Decomposition
Synthesis
xn
Decomposition
Synthesis
x0n
xNn
x2n
x1n
..........
17Linear systems
Superposition and decomposition
Synthesis
Decomposition
18Linear systems
Superposition and decomposition
Decomposition
Synthesis
19Linear systems
Common decompositions
Signal decomposition
Impulse decomposition
Fourier decomposition
20Linear systems
Impulse decomposition
Synthesis
Decomposition
21Linear systems
Fourier decomposition
Sine
Cosine
Synthesis
Decomposition
22Topics
- Linear systems
- Convolution
- Filtering
23Convolution
Mathematics
Discrete
yi åj hj xi-j
x input signal h system y output signal
Continuous
y(t) ò ht xt-t d t
24Convolution
Delta function and impulse response
Delta function
Impulse response
25Convolution
Delta function and impulse response
Examples for impulse response
System
Impulse response
Filter
Filter kernel
Image system
Point spread function
26Convolution
Convolution and linear systems
System
Input
Output
Convolution
27Convolution
Examples
Input
Output
System
Low-pass filter
High-pass filter
28Convolution
Examples
Input
Output
System
Inversion
Derivative
29Convolution
Understanding convolution
Viewpoint of convolution
Input
System
Output
30Convolution
Understanding convolution
Decomposition
Synthesis
31Convolution
Understanding convolution
Decomposition
Synthesis
Ã…
32Convolution
Understanding convolution
Decomposition
Synthesis
Ã…
33Convolution
Understanding convolution
Input
System
Output
How do you really do it?
34Convolution
Understanding convolution
x1 hn-1
x2 hn-2
x3 hn-3
x4 hn-4
x8 hn-8
x0 hn-0
35Convolution
Understanding convolution
Ã…
36Convolution
The input side algorithm
x input signal h system y output signal
for i 011 yi 0 endfor
Initialization
for i 08 for j 03 yij yij
xihj endfor endfor
Convolution
37Convolution
The input side algorithm
x input signal h system y output signal
yi åj hj xi-j
38Convolution
Mathematics
Discrete
yi åj hj xi-j
x input signal h system y output signal
Continuous
y(t) ò ht xt-t d t
39Convolution
The output side algorithm
Ã…
y6 x3 h6-3 x4 h6-4 x5
h6-5 x6 h6-6
y6 x3 h3 x4 h2 x5 h1
x6 ho
40Convolution
The output side algorithm
The convolutionmachine
41Convolution
Incomplete information
0
Zero padding
42Convolution
Incomplete information
Input
System
Output
Sine wave DC
Highpass filter
Filtered signal
gt Beginning and ending useless
43Convolution
Examples for convolution
- Identity xn dn xn
- gt d function is the identity for
convolution - Amplification/Attenuation xn k dn k
xn - Shift (delay/advance) xn dn s xn
s
44Convolution
Examples for convolution
- Derivative (First difference) yn xn -
xn-1 -
- Integration (Running sum) yn xn
yn-1
Firstdifference
Runningsum
45Convolution
Filters
Low-pass
Exponential
Sinc
Square pulse
46Convolution
High-pass filters
- d function (identity)
- Low-pass filter
- _______________________________
- High-pass filter
47Convolution
High-pass filters
Low-pass
High-pass
Exponential
Sinc
Square pulse
48Convolution
Central limit theorem
- Gaussian distribution
- Amplitude of thermal noise in an electronic
circuit - Cross-sectional intensity of a laser beam
- Pattern of holes around dart boards bullys
eye - .....
49Convolution
Central limit theorem
Observed variable Sn random processess
Gaussian distributionfor lim n-gt
m mean s2 variance s standard deviation
50Convolution
Central limit theorem
xn
xn xn xn ..
xn xn
51Topics
- Linear systems
- Convolution
- Filtering
52Filtering
Examples
Pillbox
Gaussian
Edge enhancement
Square
53Filtering
Edge Modification
Shift subtract
Edge detection
d function
Edge enhancement
54Filtering
Separability
xr,c vertr x horzc
gt Exercises