Linear systems - PowerPoint PPT Presentation

1 / 54
About This Presentation
Title:

Linear systems

Description:

'The Scientist and Engineer's Guide to Digital Signal Processing' by Steven W. Smith ... around dart board s bully s eye. Linear systems & Filtering ... – PowerPoint PPT presentation

Number of Views:91
Avg rating:3.0/5.0
Slides: 55
Provided by: philipps
Category:
Tags: board | dart | linear | systems

less

Transcript and Presenter's Notes

Title: Linear systems


1
Linear systems FilteringBased onThe
Scientist and Engineer's Guide to Digital Signal
Processingby Steven W. Smith(http//www.dspguid
e.com/)
2
Topics
  • Linear systems
  • Convolution
  • Filtering

3
Linear systems
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
Linear system
Complicated problem
Superposition
Linear system
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
4
Linear systems
Signals and systems
Analog elctronics
Input
Output
Computer programs
5
Linear systems
Reasons for understanding a system
Input
Output
System
gt Compensate for non-ideal transmission
6
Linear systems
Reasons for understanding a system
System
Input
Output
gt Find system transmitted signal -gt received
signal
7
Linear systems
Linearity
  • Homogeneity xn -gt yn gt kxn -gt kyn

gt Change in the input signal's amplitude -gt
corresponding change in the output signal's
amplitude
Power dissipation P I2R IV V2/R µ V2 gt
not homogenousgt not linear
Resistor
Ohms law I V/R or J sE
8
Linear systems
Linearity
  • Homogeneity
  • Additivity

x1n -gt y1n x2n -gt y2n gt x1n x2n
-gt y1n y2n
gt The added signals pass through the system
without interacting
9
Linear systems
Linearity
  • Homogeneity
  • Additivity

gt The added signals pass through the system
without interacting
10
Linear systems
Linearity
  • Homogeneity
  • Additivity
  • (Shift invariance) xn -gt yn gt xns -gt
    yns

11
Linear systems
Static linearity
Static response of a linear systemThe output is
the input multiplied by a constant
12
Linear systems
Memoryless systems
Memoryless system output depends only on the
present state of the input, and not on its
history.
13
Linear systems
Linearity
  • Static linearity
  • Memorylessness

gt Linear system
DC non-linear
Hysterisis
14
Linear systems
Examples
Linear systems
  • Wave propagation
  • Electrical and electronic circuits
  • Differentiation and integration
  • Convolution

Non-linear systems
  • Intensity of light transmitted through material
    Lambers law
  • Multiplication
  • Saturation
  • Systems with a threshold

15
Linear systems
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
Linear system
Complicated problem
Superposition
Linear system
Superposition
Easyproblem 1
Easyproblem N
Easyproblem 3
Easyproblem 2
..........
16
Linear systems
Superposition and decomposition
x0n
xNn
x2n
x1n
..........
Decomposition
Synthesis
xn
Decomposition
Synthesis
x0n
xNn
x2n
x1n
..........
17
Linear systems
Superposition and decomposition
Synthesis
Decomposition
18
Linear systems
Superposition and decomposition
Decomposition
Synthesis
19
Linear systems
Common decompositions
Signal decomposition
Impulse decomposition
Fourier decomposition
20
Linear systems
Impulse decomposition
Synthesis
Decomposition
21
Linear systems
Fourier decomposition
Sine
Cosine
Synthesis
Decomposition
22
Topics
  • Linear systems
  • Convolution
  • Filtering

23
Convolution
Mathematics
Discrete
yi åj hj xi-j
x input signal h system y output signal
Continuous
y(t) ò ht xt-t d t
24
Convolution
Delta function and impulse response
Delta function
Impulse response
25
Convolution
Delta function and impulse response
Examples for impulse response
System
Impulse response
Filter
Filter kernel
Image system
Point spread function
26
Convolution
Convolution and linear systems
System
Input
Output
Convolution
27
Convolution
Examples
Input
Output
System
Low-pass filter
High-pass filter
28
Convolution
Examples
Input
Output
System
Inversion
Derivative
29
Convolution
Understanding convolution
Viewpoint of convolution
Input
System
Output
30
Convolution
Understanding convolution
Decomposition
Synthesis
31
Convolution
Understanding convolution
Decomposition
Synthesis
Ã…
32
Convolution
Understanding convolution
Decomposition
Synthesis
Ã…
33
Convolution
Understanding convolution
Input
System
Output
How do you really do it?
34
Convolution
Understanding convolution
x1 hn-1
x2 hn-2
x3 hn-3
x4 hn-4
x8 hn-8
x0 hn-0
35
Convolution
Understanding convolution
Ã…
36
Convolution
The input side algorithm
x input signal h system y output signal
for i 011 yi 0 endfor
Initialization
for i 08 for j 03 yij yij
xihj endfor endfor
Convolution
37
Convolution
The input side algorithm
x input signal h system y output signal
yi åj hj xi-j
38
Convolution
Mathematics
Discrete
yi åj hj xi-j
x input signal h system y output signal
Continuous
y(t) ò ht xt-t d t
39
Convolution
The output side algorithm
Ã…
y6 x3 h6-3 x4 h6-4 x5
h6-5 x6 h6-6
y6 x3 h3 x4 h2 x5 h1
x6 ho
40
Convolution
The output side algorithm
The convolutionmachine
41
Convolution
Incomplete information
0
Zero padding
42
Convolution
Incomplete information
Input
System
Output
Sine wave DC
Highpass filter
Filtered signal
gt Beginning and ending useless
43
Convolution
Examples for convolution
  • Identity xn dn xn
  • gt d function is the identity for
    convolution
  • Amplification/Attenuation xn k dn k
    xn
  • Shift (delay/advance) xn dn s xn
    s

44
Convolution
Examples for convolution
  • Derivative (First difference) yn xn -
    xn-1
  • Integration (Running sum) yn xn
    yn-1

Firstdifference
Runningsum
45
Convolution
Filters
Low-pass
Exponential
Sinc
Square pulse
46
Convolution
High-pass filters
  • d function (identity)
  • Low-pass filter
  • _______________________________
  • High-pass filter

47
Convolution
High-pass filters
Low-pass
High-pass
Exponential
Sinc
Square pulse
48
Convolution
Central limit theorem
  • Gaussian distribution
  • Amplitude of thermal noise in an electronic
    circuit
  • Cross-sectional intensity of a laser beam
  • Pattern of holes around dart boards bullys
    eye
  • .....

49
Convolution
Central limit theorem
Observed variable Sn random processess
Gaussian distributionfor lim n-gt
m mean s2 variance s standard deviation
50
Convolution
Central limit theorem
xn
xn xn xn ..
xn xn
51
Topics
  • Linear systems
  • Convolution
  • Filtering

52
Filtering
Examples
Pillbox
Gaussian
Edge enhancement
Square
53
Filtering
Edge Modification
Shift subtract
Edge detection
d function
Edge enhancement
54
Filtering
Separability
xr,c vertr x horzc
gt Exercises
Write a Comment
User Comments (0)
About PowerShow.com