Title: Nuclear structure in the A~50 region
1Nuclear structure in the A50 region
- Roberto V. Ribas
- Instituto de Física USP
- XXVII RTFNB Santos, 2004
2Interpretation of collective features in terms
of Shell Model
- Nuclear Structure at High Spins
- Collective Model, CSM
- Large Scale Shell Model
- Measurement of Transition Probabilities
- Examples 48Cr, 46Ti
- Conclusions
3Collective x Shell Models
- 80
- Shell Model A30 (USD Wildenthal, Brown)
- High Spins 20-40 A150
- Rotational Structures
- Backbending, Rotation Alignment
- CSM, PSM (schematic microscopic structure)
- 90 Shell Model A50 (fp)
- Collective states described by a coherent
superposition of (many) single-particle states.
4(No Transcript)
5(No Transcript)
6The Rigid Rotor
7Cranked Shell Model
- Effects of the collective rotation in the
internal degrees of freedom Crank the Potential
(Routhian)
(Semiclassic)
8(No Transcript)
9(No Transcript)
10Shell Model (No Interaction Independent
Particles)
Independent Particles Approximation (mean field)
(Slater det.)
11(No Transcript)
12Configuration Mixing
Most of the excited states are formed by mixing
particle-hole configurations
? c0?0p0hc1 ?1p1h c2?2p2h...
H TV TUeff V-Ueff
Particle-hole configurations are mixed by the
residual interaction
interação residual
potential de campo médio (configuração diagonal
p/ este potencial)
Basic idea of the interacting shell
model Diagonalize the Hamiltonian H in the base
of independent particle configurations.
13Large Scale Models
- Need to construct matrix elements for the
residual interaction. - Diagonalize very large matrices
- sd (1980) 104
- fp (1990) 107
14Dimensions m-scheeme and Lanczos
15Antoine (E. Caurier)
- E.C., A. Poves, F. Nowaki, G. Martinez-Pinedo
- Nosc3 (f7/2 p3/2 f5/2 p1/2) ?(-)
- Residual interaction KB3 (developed by T. Kuo and
G. Brown in the 60s, based on nucleon-nucleon
scattering data) - Results are very good! (at least at the lower
half of the fp shell)
16(No Transcript)
17Measuring B(E2), B(M1)
- A deeper test of the model should include
confrontation of the matrix elements for the
electromagnetic transitions. - Collective transitions corresponds to large
values of B(E2) and so to very fast transitions
(1ps)gtDSAM.
18GASP-Laboratori Naz. di Legnaro - Italy
- S.M. Lenzi, F. Brandolini. C.A. Ur (Padova)
- D.R. Napoli, A. Gadea, G. de Angelis (LNL)
- J. Sanchez-Solano, A. Poves, G. Martinez-Pinedo
(Madrid) - N.H. Medina, J.R.B. Oliveira, RVR (S. Paulo)
- 48,49,50Cr
- 46,47,49V
- 46Ti
19(No Transcript)
20Doppler Shift Attenuation Method
- Line-shape analysis allows determination of the
decay rate A(t) -
21Complex Spectra
- ?-? coincidence
- Gate on Tran Below
- Gate on Tran Above
- Narrow Gate on Transition Below
22NGTB
F. Brandolini RVR NIM-A 417, 150 (1998)
23(No Transcript)
24F. Brandolini et al. NPA 642, 387 (1998)
25F. Brandolini et al. NPA 642, 387 (1998)
26F. Brandolini C.A. Ur
27Origin of Backbending
Joudagalvis Aberg PL B428, 227 (1998)
28K. Hara et al. PRL 83, 1992 (1999)
2946Ti
F. Brandolini et al. PRC (2004)
3046Ti
F. Brandolini et al. PRC (2004)
31F. Brandolini et al. PRC (2004)
3246Ti
F. Brandolini et al. PRC (2004)
33Conclusions
- Large scale Shell Model calculations reproduces
very well not only the level energies, but also
the decay rates (quadrupole moments) of fp
nuclei. - Band Termination, corresponding to the maximum
angular momentum of the fp valence particles is
predicted and observed in most of the cases. - States of opposite parity are also well described
by coupling a hole in the sd shell to the fp
valence particles. - Backbending is in general of different nature,
compared to the typical cases in the rare-earth
nuclei.
34Thanks!
35PRC-66, 024304 (2002)
3648V - PRC-66, 024304 (2002)
37PRC-66, 024304 (2002)
3848V - PRC-66, 024304 (2002)
39GXPF1 vs. KB3G
Estimated rms error (FDA)
nuclei states rms error in MeV ( of data) rms error in MeV ( of data)
nuclei states GXPF1 KB3G
N, Zlt28 Yrast) 0.154(136) 0.235(129)
N, Zlt28 Yrare 0.201(45) 0.263(23)
N or Z28 Yrast) 0.184(92) 0.647(87)
N or Z28 Yrare 0.195(57) 0.802(44)
Ngt28, Zlt28 Yrast) 0.145(129) 0.296(126)
Ngt28, Zlt28 Yrare 0.145(75) 0.302(55)
N, Zgt28 Yrast) 0.186(55) 0.401(51)
N, Zgt28 Yrare 0.187(23) 0.458(23)
) Ground states are excluded
M. Honma et al., PRC65 (2002) 061301(R)
40(No Transcript)
41(No Transcript)
42(No Transcript)