Solutions by Substitutions, p' 7578 2'5 - PowerPoint PPT Presentation

1 / 13
About This Presentation
Title:

Solutions by Substitutions, p' 7578 2'5

Description:

Consider the separable DE y dx x dy = 0. Let y = vx or dy = x dv v dx ... ln | x | = arctan u k, k = constant. u = tan(ln | x | k) or y = x tan(ln | x | k) ... – PowerPoint PPT presentation

Number of Views:37
Avg rating:3.0/5.0
Slides: 14
Provided by: jonatha317
Category:

less

Transcript and Presenter's Notes

Title: Solutions by Substitutions, p' 7578 2'5


1
Solutions by Substitutions, p. 75-78 (2.5)
  • OBJECTIVES
  • Define homogeneous DE
  • Use substitutions to solve DE
  • Solve Bernoullis Equation

2
  • Consider the separable DE y dx x dy 0
  • Let y vx or dy x dv v dx
  • Substitution vx dx x (x dv v dx) 0
  • or vx dx x2 dv vx dx 0
  • x2 dv -2vx dx
  • Separating variables
  • Integrating ln v 2ln x k , k constant
  • ln v ln x2 k

3
  • homogeneous function a function f with the
    property for some real number , p. 75.
  • 1st order homogeneous DE an equation of the
    form M (x, y) dx N(x, y) dy 0 with M, and N
    are homogeneous fo the same degree, or
  • and
  • p. 75.
  • Homogeneous equations can be solved by
    substitution of y ux or x vy, p. 75.

4
  • Consider (xy y2 x2) dx x2 dy 0.
  • Note M (x, y) xy y2 x2 , N(x, y) x2
  • (tx)(ty) (ty) 2 (tx) 2,
  • t2xy t2 y2 t2x2,
  • t2 (xy y2 x2),
  • t2 M(x, y),

(tx)2 t2x2 t2x2
t2 N(x, y)
5
  • Consider (xy y2 x2) dx x2 dy 0.
  • Let y ux, then dy x du udx.
  • Substitution
  • x (ux) (ux) 2 x2 dx x2 (x du udx) 0
  • (x2 u u2 x2 x2)dx x3 du x2 udx 0
  • (u2 x2 x2)dx x3 du 0
  • (u2 1) x2dx x3 du

6
  • (u2 1) x2dx x3 du
  • ln x arctan u k, k constant
  • u tan(ln x k) or y x tan(ln x
    k)

7
Method of solution, p. 75
  • a) Substitute either y ux or Nx vy .
  • b) Rewrite equation using new variables.
  • c) Solve transformed equation.
  • d) Express solution in terms of original
    variables.

8
  • Consider
  • Let u x y, then or
  • Substitution

9
  • Integrating
  • (u 2)2 e2(x k) 1
  • (x y 1)2 Ce2x 1, C ek

10
  • Bernoulli Equation
  • Consider
  • Let u y2 then or
  • Substitution

11
  • Multiply by
  • integrating factor e10x,
  • Separating variables
  • Integrating by parts
  • k constant

12
  • C k C1 , C1 constant
  • Multiply by e10x,
  • Implicit solution

13
Homework
  • p. 10 21-24
  • p. 17 15-24
  • p. 29 9-12
  • p. 78 1-30 alternate odd
  • Read p. 92-98 (3.1)
  • Office hours M-F 900 1015
  • or by appointment
Write a Comment
User Comments (0)
About PowerShow.com