Generic Tools and Methods for Data Handling - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Generic Tools and Methods for Data Handling

Description:

Special Interest Group Generic Tools and Methods Data Handling. Using ontologies ... Matisse is cripple-ware' Almost no support. MAGE-ML data converter for import ... – PowerPoint PPT presentation

Number of Views:39
Avg rating:3.0/5.0
Slides: 17
Provided by: fransv9
Category:

less

Transcript and Presenter's Notes

Title: Generic Tools and Methods for Data Handling


1
Generic Tools and Methodsfor Data Handling
  • Generic vs. Specific

2
Generic
  • Models for -omics experiments
  • Generate database scheme from model
  • Generate XML schema from model
  • Generate access code from model
  • Special Interest Group Generic Tools and Methods
    Data Handling
  • Using ontologies
  • Investment for the future

3
Specific
  • Micro Array Gene Expression (MAGE) data
  • MAGE-stk toolkit
  • MAGE-ML import/export
  • MAGE-OM api access
  • Quick and dirty

4
SIG Generic Tools and Methods Data Handling
5
Status generic
  • Get the best from 3 worlds docDBcode
  • Unified tools not yet found
  • Evaluate part-to-part connections

Databases
X / R / OO
Codegeneration
CastorJDOHibernate
Mt, XTables
Codegeneration
DocumentsXML
Programming
Data / Doccentric
CastorJDOHibernate
6
Framework so far
VL OOprograms
code
converter
MAGE-VLfile
MAGE-MLfile
models
UML
DDL
OODBMSMatisse)
Mt.exe
XMI
ODL
XQueryBridge ?
Xqueryad hoc queries
XML Schema
GraphViz
Graphicaloutput
Tabularoutput
XformsXGUI
7
Visualization using Xquery,dotty and Graphviz
8
MatisseJ2EESVG data viewer
  • Objects are Nodes
  • Relations are Edges
  • Looks like graph visualization with few
    algorithms and parameters
  • Too many neighbors pruning
  • Hubs and authorities clusters networks
  • Multiple views IsA, HasA, etc.

9
Example select from Person
10
Summary, The End
  • Nice ideas
  • Model independent
  • Re-use of tools in VLE
  • Progress (too ?) slow on my own
  • Crappy tools
  • More resources
  • Or skip parts

11
Normalization project VLE
  • (too much?) Focus on generic
  • Build VLE like -omics framework.
  • Using Matisse OO-DBMS
  • With web-access data viewer
  • Java and R access
  • (specific) MAGE-ML I/O
  • Web-services

12
Status Matisse OO-DBMS
  • MAGE-OM model to Matisse OO DBMS
  • Lose some information (packages export MAGE-ML)
  • Matisse is cripple-ware
  • Almost no support
  • MAGE-ML data converter for import
  • But Matisse gives no error message

13
Status web-access data viewer
  • Access with J2EEHTML in tables
  • Data is too complex for tables
  • J2EEForm based editor for mage-ml
  • Have DTD but need XSD
  • J2EESVG data viewer
  • Nice, wait for 2nd presentation
  • Need tighter integration
  • Tools (dot) are crashy

14
Status Java and R access
  • R coupling of data files via J2EEXML
  • Too slow
  • Java code generation
  • Matisse works well
  • Reflection also (everything is just a generic
    object)

15
Status MAGE-ML I/O
  • Import
  • Matisse gives no error message
  • Export
  • Lose some information (packages export MAGE-ML)

16
Status Web-services and Ontologies
  • Kept in mind but no work done
  • Connection with Taverna should be possible
  • What the heck are ontologies?
Write a Comment
User Comments (0)
About PowerShow.com