Title: What is Pan-STARRS?
1What is Pan-STARRS?
- Telescopes
- 4 x 1.8m
- 7 square degree FOV
- possible sites on Mauna Kea and Haleakala
- Operation mode
- simultaneous imaging of the same field for
transient/moving object detection - broad band optical imaging
- multiple survey modes
- Detectors
- 1Bn pixels per camera
- array of arrays
- 0.3 pixels
- few second readout
- lt5e- read-noise
- Data-Processing System
- Core pipeline will generate
- snapshot images
- difference/summed images
- basic catalogs
- NEO system
2Performance Summary
- Sensitivity (assuming 0.6 seeing)
- T(R24) 58s
- T(V24.4) 67s
- T(RV24) 31s
- 30s exposure -gt 6000 sq deg / night
- Sky noise
- 7e/s/pixel from sky (RV)
- Read noise 2-3e is negligible for t gt 20s
- Astrometry
- Sigma0.07 (FWHM/0.6) / (SN/5)
- Systematics limited by atmosphere
3Small vs Large Apertures
- Why size matters
- small telescopes are cheaper for given collecting
area - CCD costs scale with detector area (not Npixels)
- Optimal design matches seeing to CCD resolution
- rapid construction and low risk
- Fast guiding for enhanced image quality
- Low environmental impact
4Trends
- Future dominated by detector improvements
- Moores Law growth in CCD capabilities
- Gigapixel arrays on the horizon
- Improvements in computing and storage will
track growth in data volume - Investment in software is critical, and
growing
Total area of 3m telescopes in the world in m2,
total number of CCD pixels in Megapix, as a
function of time. Growth over 25 years is a
factor of 30 in glass, 3000 in pixels.
5D 1.5m
D 8m
D4m
- For (D 4 r0) 35 of light is in a single
bright speckle - guiding at 10Hz gives PSF with diffraction
limited core - tip-tilt on large apertures is relatively
ineffective -
6(No Transcript)
7Detector Details Orthogonal Transfer
- Orthogonal Transfer
- remove image motion
- high speed (few usec)
Normal guiding (0.73)
OT tracking (0.50)
8(No Transcript)
9File C\ZEMAX\panstars\PS-prelim-9.ZMX Title
Pan-STARRS preliminary design review Date TUE
DEC 9 2003 SURFACE DATA SUMMARY Surf Comment
Radius Thickness Glass Diameter Conic
r2 r4 r6 6 Primary -7850
-2257.85 MIRROR 1800 -1.52934
2.24e-21 7 Secondary -6658 2057.85
MIRROR 900 -18.6695
4.68e-19 9 LENS-1A 994.5 60
F_SILICA 640 0 10 LENS-1B 1732.7
10 640 0 11 LENS-2A
801.7 45 F_SILICA 620 0 12
LENS-2B 540.0 815 620
0 13 FILTER-A Infin 20 F_SILICA
530 0 14 FILTER-B Infin 100
530 0 15 LENS-3A -1928.5
50 F_SILICA 520 0
4.02e-10 1.51e-15 16 LENS-3B -1790.1
198.07 520 0 IMA CCD-ARRAY
Infin 500 0
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16Performance in U and Y
- Optical Performance deteriorates at extreme ends
of the optical region - Using a curved filter helps by giving extra
refractive power
17(No Transcript)
18(No Transcript)
19(No Transcript)
20Distortion
21(No Transcript)
22Ghost Image Analysis
- Pupil ghosts
- Image ghosts
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28Fabrication of the aspheric Optics
- The asphericity of the mirrors is within
established fabrication capability. - Dewar window is an order of magnitude less
aspheric than the Sloan window ( 1 mm vs. 8mm)
29Listing of surface sag File C\ZEMAX\panstars\P
S-prelim-9.ZMX Title Pan-STARRS rounded Date
MON NOV 24 2003 Units are Millimeters. Semi
diameter of surface 6 9.000000E002. Best Fit
Sphere curvature -1.269040E-004. Best Fit
Sphere radius -7.879973E003. Best Fit
Sphere residual 2.979204E-002. (rms)
Y-coord Sag BFS Sag
Deviation Remove 0.0E000 0.00000E000
0.00000E000 0.00000E000 6.31004E-002
5.0E001 -1.59234E-001 -1.58631E-001
6.03222E-004 6.37036E-002 1.0E002
-6.36929E-001 -6.34545E-001 2.38346E-003
6.54839E-002 1.5E002 -1.43305E000
-1.42779E000 5.25245E-003 6.83528E-002
2.0E002 -2.54755E000 -2.53848E000
9.06295E-003 7.21633E-002 2.5E002
-3.98035E000 -3.96674E000 1.36087E-002
7.67091E-002 3.0E002 -5.73137E000
-5.71275E000 1.86243E-002 8.17247E-002
3.5E002 -7.80049E000 -7.77670E000
2.37849E-002 8.68854E-002 4.0E002
-1.01875E001 -1.01588E001 2.87063E-002
9.18067E-002 4.5E002 -1.28924E001
-1.28595E001 3.29439E-002 9.60444E-002
5.0E002 -1.59149E001 -1.58790E001
3.59936E-002 9.90940E-002 5.5E002
-1.92549E001 -1.92176E001 3.72901E-002
1.00390E-001 6.0E002 -2.29121E001
-2.28759E001 3.62077E-002 9.93081E-002
6.5E002 -2.68862E001 -2.68542E001
3.20589E-002 9.51593E-002 7.0E002
-3.11771E001 -3.11530E001 2.40945E-002
8.71949E-002 7.5E002 -3.57844E001
-3.57729E001 1.15029E-002 7.46033E-002
8.0E002 -4.07078E001 -4.07144E001
-6.59053E-003 5.65098E-002 8.5E002
-4.59470E001 -4.59782E001 -3.11241E-002
3.19762E-002 9.0E002 -5.15017E001
-5.15648E001 -6.31004E-002 0.00000E000
30(No Transcript)
31Tolerance Analysis
- Sensitivity analysis of alignment
- Monte Carlo modeling
32(No Transcript)
33Wavefront Sensing and Telescope Collimation
- Tests with OPTIC using a calcite block to make
extrafocal images - OPTIC design has 0.5 disk at 4 separation
- PS design could be as much as an 8 disk at 10
separation, enough for 50-100 resolution elements
over pupil.
34In/extra Focal Images for Pan-STARRS
r 1.6 deg, SS filter
Extra
Intra
Extra Intra
Nominal intra- and extra focal images, 4.4
diameter pupil
100?m secondary decenter
0.01 deg secondary tilt
35Atmospheric Dispersion
- In the broad Solar System filter, atmospheric
dispersion dominates other aberration for zenith
distances over 10 deg.
36(No Transcript)
37PSF Area vs. Air Mass
dispersion
seeing
charge diffusion
trailing loss
pixel
38Design Pan-STARRS Post PDR 3, incorporating an ADC
39A traditional ADC contains many additional
air-glass surfaces and does not achieve
acceptable image quality over the wide Pan-STARRS
field. Therefore we did not seriously consider
ADCs before PDR.
40ADC
The design chosen has a rotating prism between
fixed lenses. This avoids the large rotary seal
and presents less of an engineering challenge and
schedule risk.
- Refractive indices match at 656 nm
- Zero deviation
- No added glass/air interfaces
- No large diameter rotating seals
- Relaxed tolerances on the flat surfaces
Maximum correction
No correction
Siloxane
Fused silica
41ADC prototype during filling procedure
42Design Pan-STARRS Final 2 ADC on maximum
dispersion
Note Box is 5"x5"
43At 75 zenith distance, the ADC fully corrects
atmospheric dispersion
44Telescope Studies
- Vertex RSI, Richardson TX
- Common alt-az
- Common equatorial
- EOST, Tucson AZ
- Common alt-az
- Independent alt-az
- Independent equatorial
45Haleakala
46Schematic of EOS Ice Dome as PS1 Dome
PS1EOS Ice Dome
MAGNUM
47Mauna Kea
CFHT
UKIRT
48Conceptual Configurations for Pan-STARRS-4 in the
UH 2.2 m telescope building