Title: Linear SVM
1Linear SVM
From perceptron to kernel methods
Following Scholkopf, see SVM site
Course website http//horn.tau.ac.il/course06.htm
l
2(No Transcript)
3(No Transcript)
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8(No Transcript)
9(No Transcript)
10(No Transcript)
11(No Transcript)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26(No Transcript)
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(No Transcript)
39(No Transcript)
40(No Transcript)
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45Cluster Analysis
- The clustering problempartition a data-set into
a number of groups such that points within each
group are alike in some sense. - Approaches
- Hierarchical algorithms - cut the dendrogram at a
certain level. - Partitional algorithms.
- Parametric methods.
- K-means.
- Mixture models.
- Nonparametric methods.
- Graph theoretic methods.
- Information theoretic.
- Algorithms based on statistical physics.
- Density estimation methods.
46Support Vector Clustering
- Given points x in data space, define images in
Hilbert space. - Require all images to be enclosed by a minimal
sphere in Hilbert space. - Reflection of this sphere in data space defines
cluster boundaries. - Two parameters width of Gaussian kernel and
fraction of outliers
Ben-Hur, Horn, Siegelmann Vapnik. JMLR 2 (2001)
125-127
47(No Transcript)
48(No Transcript)
49(No Transcript)
50Variation of q allows for clustering solutions on
various scales
q1, 20, 24, 48
51(No Transcript)
52Example that allows for SVclustering only in
presence of outliers. Procedure limit ß
ltC1/pN, where pfraction of assumed outliers in
the data.
q3.5 p0
q1 p0.3
53Similarity to scale space approach for high
values of q and p. Probability distribution
obtained from R(x).
q4.8 p0.7
54(No Transcript)
55(No Transcript)