Linear SVM - PowerPoint PPT Presentation

1 / 51
About This Presentation
Title:

Linear SVM

Description:

Given points x in data space, define images in Hilbert space. Require all images to be enclosed by a minimal sphere in Hilbert space. ... – PowerPoint PPT presentation

Number of Views:24
Avg rating:3.0/5.0
Slides: 52
Provided by: wdw
Category:
Tags: svm | hilbert | linear

less

Transcript and Presenter's Notes

Title: Linear SVM


1
Linear SVM
From perceptron to kernel methods
Following Scholkopf, see SVM site
Course website http//horn.tau.ac.il/course06.htm
l
2
(No Transcript)
3
(No Transcript)
4
(No Transcript)
5
(No Transcript)
6
(No Transcript)
7
(No Transcript)
8
(No Transcript)
9
(No Transcript)
10
(No Transcript)
11
(No Transcript)
12
(No Transcript)
13
(No Transcript)
14
(No Transcript)
15
(No Transcript)
16
(No Transcript)
17
(No Transcript)
18
(No Transcript)
19
(No Transcript)
20
(No Transcript)
21
(No Transcript)
22
(No Transcript)
23
(No Transcript)
24
(No Transcript)
25
(No Transcript)
26
(No Transcript)
27
(No Transcript)
28
(No Transcript)
29
(No Transcript)
30
(No Transcript)
31
(No Transcript)
32
(No Transcript)
33
(No Transcript)
34
(No Transcript)
35
(No Transcript)
36
(No Transcript)
37
(No Transcript)
38
(No Transcript)
39
(No Transcript)
40
(No Transcript)
41
(No Transcript)
42
(No Transcript)
43
(No Transcript)
44
(No Transcript)
45
Cluster Analysis
  • The clustering problempartition a data-set into
    a number of groups such that points within each
    group are alike in some sense.
  • Approaches
  • Hierarchical algorithms - cut the dendrogram at a
    certain level.
  • Partitional algorithms.
  • Parametric methods.
  • K-means.
  • Mixture models.
  • Nonparametric methods.
  • Graph theoretic methods.
  • Information theoretic.
  • Algorithms based on statistical physics.
  • Density estimation methods.

46
Support Vector Clustering
  • Given points x in data space, define images in
    Hilbert space.
  • Require all images to be enclosed by a minimal
    sphere in Hilbert space.
  • Reflection of this sphere in data space defines
    cluster boundaries.
  • Two parameters width of Gaussian kernel and
    fraction of outliers

Ben-Hur, Horn, Siegelmann Vapnik. JMLR 2 (2001)
125-127
47
(No Transcript)
48
(No Transcript)
49
(No Transcript)
50
Variation of q allows for clustering solutions on
various scales
q1, 20, 24, 48
51
(No Transcript)
52
Example that allows for SVclustering only in
presence of outliers. Procedure limit ß
ltC1/pN, where pfraction of assumed outliers in
the data.
q3.5 p0
q1 p0.3
53
Similarity to scale space approach for high
values of q and p. Probability distribution
obtained from R(x).
q4.8 p0.7
54
(No Transcript)
55
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com