Title: Reasoning in Propositional Logic
1Reasoning in Propositional Logic
2Learning Objectives
- Introduction to knowledge bases
- Wumpus world
- Introduction to logic
- Propositional logic
- Normal forms
- Inference rules
3Acknowledgements
- These slides have been adapted from Stuart
Russell and Peter Norvig.
4(No Transcript)
5(No Transcript)
6(No Transcript)
7(No Transcript)
8Where is the Wumpus?
9A
10S1,2 so W1,3 or W2,2 No S2,1 so No W2,2
No B1,2 so No P2,2 No P2,2 so P1,3
S
A
11OK
S
A
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19(No Transcript)
20(No Transcript)
21(No Transcript)
22(No Transcript)
23(No Transcript)
24(No Transcript)
25(No Transcript)
26Natural Deduction
27(No Transcript)
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(No Transcript)
33(No Transcript)
34(No Transcript)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38- Let Si,jj be the proposition There is a stench
at cell i,j and Bi,j be the proposition There
is a breeze in cell i,j. - Assume that in the Wumpus World, the KB contains
the following - S1,1 B1,1
- S2,1 B2,1
- S1,2 B1,2
- The KB also contains among other rules, the
following - R1 S1,1 -gt W1,1 W1,2 W2,1
- R2 S2,1 -gt W1,1 W2,1 W2,2 W3,1
- R3 S1,2 -gt W1,1 W1,2 W2,2 W1,3
- Also, for each cell in the grid the following is
a rule - R4 S1,2 -gt W1,3 v W1,2 v W2,2 v W1,1
39- Show that W1,3 is entailed by KB.
- 1. W1,1 W1,2 W2,1 by MP,R1 S1,1
- 2. W1,1 W1,2 W2,1 by -elim.
- 3. W1,1 W2,1 W2,2 W3,1 by MP,R2 S2,1
- 4. W1,1 W2,1 W2,2 W3,1 by -elim.
- 5. W1,3 v W1,2 v W2,2 v W1,1 by MP,R4 S1,2
- 6. W1,3 v W2,2 resolve (2),(5) for W1,1 W1,2
- 7. W1,3 resolve (6),(4) for W2,2
40- Solution 2. Show that W1,3 is entailed by KB. Our
goal is to show that KB W1,3 is unsatisfiable. - First, translate the KB into CNF then show
unsatisfiability by resolution.
(S1,1 v W1,1) R11 (S1,1 v W1,2) R12 (S1,1 v
W2,1) R13 (S2,1 v W1,1) R21 (S2,1 v W2,1)
R22 (S2,1 v W2,2) R23 (S2,1 v W3,1) R24 (S1,2 v
W1,1) R31 (S1,2 v W1,2) R32 (S1,2 v W2,2)
R33 (S1,2 v W1,3) R34
(S1,2 v W1,3 v W1,2 v W2,2 v W1,1) W1,3
(negation of goal) S1,1 S2,1 S1,2 B1,1
B2,1 B1,2
41(No Transcript)
42(No Transcript)
43(No Transcript)
44(No Transcript)
45(No Transcript)
46Resolution is refutation-complete
- Resolution can not be used to find all the
logical consequences of a given set of sentences. - But, it can be used to find all answers to a
given question using the negated-goal method. - If a set of sentences is unsatisfiable, then
resolution will always derive a contradiction.