Title: Earth, Moon and Mars: How They Work
1Earth, Moon and Mars How They Work
Professor Michael Wysession Department of Earth
and Planetary Sciences Washington University, St.
Louis, MO (with thanks to Brad Joliff, Randy
Korotev, Mark Wieczorek) Lecture 10 The Moon
2(No Transcript)
3MOON Mass 1.23 of Earths R 1737 km (27.3
of Earths) g 16.5 of Earths day 29.5 Earth
days atmosphere none (though there is sodium
exosphere)
4(No Transcript)
5Clementine spectral reflectance Lucey et al.
(1995)
mare basalt
highlands anorthosite
nearside telescopic
nearside FeO
high FeO (red white) mare basalt
dark mare basalt
66 Apollo missions on which samples were
collected 1969 1972 382 kg of
samples 3 Luna missions (Russia) 1970
1976 0.32 g of samples
7Lack of erosion allows understanding of cratering
process
8(No Transcript)
9(No Transcript)
10(No Transcript)
11Giant-impact model for formation of the
Moon(artists depictions!)
12(No Transcript)
13(No Transcript)
14(No Transcript)
15(No Transcript)
16Internal Structure
- Differentiated Crust and Mantle
- Feldspathic Crust
- Ultramafic CumulateMantle
- Small Core
- Layered Crust
- Al-rich upper crust
- KREEP zone
- Mafic (Fe, Mg-rich) lower crust
- Impact and volcanic modification
Impact Basin
17all or mostly molten magma ocean
core
O, Mg, Al, Si Ca, Ti, Fe
18olivine pyroxene sink
Al Ca
Mg Fe
19plagioclase floats!
Al Ca
liquid
solid
Mg, Fe, Ti
20anorthosite crust (Al, Ca)
incompatible elements (K, P, Y, Zr, La, Th, U,
many others)
ultramafic mantle (Fe, Mg, Ti)
oversimplified textbook model
21melt volume of biggest basin-forming impacts
anorthosite crust (Al, Ca)
50 km
trapped
residual
liquid
ultramafic mantle (Fe, Mg, Ti)
22impact basin
moon
anorthosite crust
trapped
residual
liquid
ultramafic mantle
23mare basalt(Fe, Mg, Ti)
anorthosite crust (Al, Ca)
50 km
trapped
residual
liquid
alias KREEP
ultramafic mantle
partial melting in mantle
24(No Transcript)
25Formation of the Earliest Crust, 1
26Formation of the Earliest Crust, 2
27Interior Evolution Asymmetry Mantle Overturn
- Asymmetry involves mantle heat sources.
- Production of secondary crust tied to locus of
radioactive heat-producing elements - Cumulate mantle overturn may have been
localized. - Root cause unknown
- Degree-1 downwelling
- Early very large (Procellarum) impact basin?
Magnesian-suite Intrusives
Residual KREEP pockets
Mixing
Sinking of Fe Ti-rich minerals
KREEP-rich residuum - localized
overturn
Mg-rich cumulates
Sinking of Fe Ti-rich minerals
KREEP-rich residuum - localized
overturn
Near side
Far side
28Fig. 5-5 from Papike J.J., Ryder G., and Shearer
C. K. (1998) Chapter 5. Lunar Samples. In
Reviews in Mineralogy, Vol. 36, Planetary
Materials (ed. J. J. Papike), pp. 5-15-234,
Mineralogical Society of America, Washington.
29Global View Crustal Thickness
Near Side
Crust-mantle boundary near Mare Cognitum
40 km
Far Side
Khan et al., 2000
M. Wieczorek
30South Pole-Aitken Basin
- Largest Impact basin on Moon
- 2200 km diameter
- Same size as Hellas on Mars
- Age unknown, but from geologic
relationships, is the oldest of large
lunar impact basins. - Possibly exhumed lower crust
Geologic cross section
31From Jolliff et al., 2000, JGR
32FHT-SPA
From Jolliff et al., 2000, JGR
33Origin of Compositional Asymmetry
- Formation and distribution of igneous rock
types - consistent w/ magmasphere hypothesis
- with modifications
- Anorthositic crust absent from Procellarum
KREEP Terrane - Stripped by early impact
- or non-uniform solidification of Magma Ocean
resulted in.. - Anorthositic protocontinent
- KREEPy residual sea
34Lunar Mineralogy
- Minerals provide keys to understanding lunar
rocks because their compositions and atomic
structures reflect formation conditions. - Lunar minerals are anhydrous no water!
- Lunar minerals mostly formed at low pressure
35lunar mineralogy
Only 4 minerals account for 98 of the Moons
crust!
typical volume (mode)
maria
plagioclase pyroxene olivine ilmenite total
85 10 5 0.3 100
36 53 6 5 100
36approximate mean surface of feldspathic highlands
X
37plagioclase composition
Na
Ca
CaAl2Si2O8
NaAlSi3O8
0
10
20
30
40
50
60
70
80
90
100
albite
oligoclase
andesine
labradorite
bytownite
anorthite
plagioclase in the lunar highlands is
anorthite(typically An95-98)
38 meteoroid impact velocity 20-40 km/s
lunar meteorite
lunar escape velocity 2.4 km/s
time from launch to landing lt100 years to 20
million years
lands at terminal velocity 0.1 km/s
39lunar meteorite MacAlpine Hills 88105
both these rocks are regolith breccias
Apollo 16 sample 60019
40Apollo 11
regolith breccia
2 mm
impact-glass spherule
impact-melt breccia
anorthosite
soil-coated basalt
feldspathic breccia
basalt
41regolith (soil)
42Soil Components
- Many rock types make up average soil
- Impact-fused soil Agglutinates
- Reduced Fe metal major effect on optical
properties - Highly vesicular
- Abundant, e.g., 50 of some soils
- Volcanic glasses
- Impact-melt glasses and breccias
Jolliff et al., 1996
Apollo 11
43Dhofar 1180 115 grams Oman
Northwest Africa 2200 552 grams Morocco
lunar meteorite regolith breccias
Dhofar 1428 213 grams Oman
Dhofar 1084 90 grams Oman
44volcanic glass spherules
from Apollo 17 regolith sample 71061
Regolith breccias contain lithologies that can
only be produced at or above the lunar surface.
from Apollo 17 regolith sample 76503
agglutinate
45solar wind
regolith (soil)
He2
H
46Allan Hills 81005 31 grams Antarctica
fusion crust
unheated interior
Pecora Escarpment 02007 22 grams Antarctica
Queen Alexandra Range 93069 21 grams Antarctica
regolith breccias
47LaPaz Icefield 02205 1226 grams Antarctica
Miller Range 05035 142 grams Antarctica
basalts
LaPaz Icefield 02226 244 grams Antarctica
48regolith breccia
Sayh al Uhaymir 169 an impact-melt with attached
regolith breccia mass 206 g found 21 February
2004 where Oman
impact-melt breccia
regolith breccia
norite clast
impact-melt breccia
49lunar mineralogy
mare nonmare
plagioclase pyroxenes olivine ilmenite
all mineral data from Papike, Ryder, Shearer
(1998)
Al2O3 ()
50lunar mineralogy
anorthite
soils
regoliths from Apollo and Luna missions
Al2O3 ()
Earths crust
pyroxene
olivine
51lunar mineralogy
anorthite
highlands
lunar meteorites
Al2O3 ()
maria
pyroxene
olivine
52Al2O3 ()
Fe2O3 MgO ()
53Crustal Igneous Rock Suites
- Ferroan Anorthosite
- Early plagioclase flotation crust
- Magnesian Suite
- Typical plutonic-magmatic fractionation trends
- Some have KREEP-enriched parent magmas
- Alkalic Suite
- Extended fractionation (granite, monzogabbro/QMD)
- Possible relation to Mg-Suite
54Rare Earth Elements
The trivalent REE (3 charge) are incompatible in
major minerals. However, Eu occurs in 2 valence
state. Eu2 is right size and charge to
substitute for Ca, this it is compatible in
plagioclase.
55Crustal Rock Ages
56Lunar Terranes FeO
57all lunar meteorites
feldspathic highlands
near side
mixed provenance and brecciated nonmare norites
Al2O3 ()
mare
far side
Clementine Lucey et al. (1995)
58incompatible trace elements(on the Moon)
P, K, Rb, Y, Zr, Nb, Mo, Cs, Ba, La, Ce, Pr, Nd,
Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W,
Th, U red radioactive
59Lunar Terranes Thorium
60all lunar meteorites
near side
mare
far side
feldspathic highlands
Lunar Prospector Lawrence et al. (2000)
61all lunar meteorites
SaU 169 IMBrx
near side
SaU 169 RegBrx
mare
far side
feldspathic highlands
Lunar Prospector Lawrence et al. (2000)
62(No Transcript)
63Moons magnetic field From core? Impacts? Is
Core iron or titanium-rich silicate?
64Moonquakes
65(No Transcript)
66(No Transcript)
67Comparison of Earthquake and Moonquake
68Bottom of magma ocean? Compositional boundary
between olivine-rich and pyroxene-rich
silicates? Maximum depth of melting of mare
source region?
69Figure 3-14a
70(No Transcript)