Title: OXIDATIONREDUCTION
1OXIDATION-REDUCTION
2DEFINITIONS
- Oxidation Loss of electrons.
- Reduction Gain of electrons.
- Reductant Species that loses electrons.
- Oxidant Species that gains electrons.
- Valence the electrical charge an atom would
acquire if it formed ions in aqueous solution.
3RULES FOR ASSIGNMENT OF VALENCES
- 1) The valence of all pure elements is zero.
- 2) The valence of H is 1, except in hydrides,
where it is -1. - 3) The valence of O is -2, except in peroxides,
where it is -1. - 4) The algebraic sum of valences must equal zero
for a neutral molecule or the charge on a complex
ion.
4VARIABLE VALENCE ELEMENTS
- Sulfur SO42-(6), SO32-(4), S(0), FeS2(-1),
H2S(-2) - Carbon CO2(4), C(0), CH4(-4)
- Nitrogen NO3-(5), NO2-(3), NO(2), N2O(1),
N2(0), NH3(-3) - Iron Fe2O3(3), FeO(2), Fe(0)
- Manganese MnO4-(7), MnO2(4), Mn2O3(3),
MnO(2), Mn(0) - Copper CuO(2), Cu2O(1), Cu(0)
- Tin SnO2(4), Sn2(2), Sn(0)
- Uranium UO22(6), UO2(4), U(0)
- Arsenic H3AsO40(5), H3AsO30(3), As(0),
AsH3(-1) - Chromium CrO42-(6), Cr2O3(3), Cr(0)
- Gold AuCl4-(3), Au(CN)2-(1), Au(0)
5BALANCING OVERALL REDOX REACTIONS
- Example - balance the redox reaction below
- Fe Cl2 ? Fe3 Cl-
- Step 1 Assign valences,
- Fe0 Cl20 ? Fe3 Cl-
- Step 2 Determine number of electrons lost or
gained by reactants. - Fe0 Cl20 ? Fe3 Cl-
- ? ?
- 3e- 2e-
- Step 3 Cross multiply.
- 2Fe 3Cl20 ? 2Fe3 6Cl-
6HALF-CELL REACTIONS
- The overall reaction
- 2Fe 3Cl20 ? 2Fe3 6Cl-
- may be written as the sum of two half-cell
reactions - 2Fe ? 2Fe3 6e- (oxidation)
- 3Cl20 6e- ? 6Cl- (reduction)
- All overall redox reactions can be expressed as
the sum of two half-cell reactions, one a
reduction and one an oxidation.
7- Another example - balance the redox reaction
- FeS2 O2 ? Fe(OH)3 SO42-
- Fe2S20 O20 ? Fe3(OH)3 S6O42-
- ? ?
- 15e- 4e-
- 4FeS2 15O2 ? Fe(OH)3 SO42-
- 4FeS2 15O2 ? 4Fe(OH)3 8SO42-
- 4FeS2 15O2 14H2O ? 4Fe(OH)3 8SO42- 16H
- This reaction is the main cause of acid
generation in drainage from sulfide ore deposits.
Note that we get 4 moles of H for every mole of
pyrite oxidized!
8- Final example
- C2H6 NO3- ? HCO3- NH4
- C-32H6 N5O3- ? 2HC4O3- N-3H4
- ? ?
- 14e- 8e-
- 8C2H6 14NO3- ? 2HCO3- NH4
- 8C2H6 14NO3- ? 16HCO3- 14NH4
- 8C2H6 14NO3- 12H 6H2O? 16HCO3- 14NH4
9STRENGTH OF REDUCING AND OXIDIZING AGENTS
- Zn Fe2 ? Zn2 Fe
- Which way will the reaction go?
- ?Gr -16.3 kcal/mole
- Zn is a stronger reducing agent than Fe.
- Fe Cu2 ? Fe2 Cu
- ?Gr -34.51 kcal/mole
- Fe is a stronger reductant than Cu.
10ELECTROMOTIVE SERIES
- Weakest oxidant Strongest reductant
- Zn ? Zn2 2e-
- Fe ? Fe2 2e-
- Cu ? Cu2 2e-
- Ag ? Ag e-
- Strongest oxidant Weakest reductant
11Figure 16.1 from Faure. Schematic diagram of a
Zn-Cu electro-chemical cell. The two metal
electrodes are immersed in solutions of ZnSO4 and
CuSO4, which are prevented from mixing by a
porous partition.
12ELECTROMOTIVE FORCE
- Electromotive force (EMF) The electrical
potential generated by the half reactions of an
electrochemical cell. - Consider Zn Cu2 ? Zn2 Cu
- At equilibrium the electrochemical cell has to
obey
13? (Faraday Constant) 96,489 C mol-1
23.06 kcal/V-1
mol-1 Eo ?Gro/(2?) -50.8 kcal/(2
mol23.06 kcal V-1 mol-1) -1.1 V
14STANDARD HYDROGEN ELECTRODE (SHE)
- In order to assign a ranking of half-cell
reactions, we arbitrarily set E 0.00 V for the
reaction - H2(g) ? 2H 2e-
- when pH2 1 bar and pH 0. In other words, Eo
0.00 V. This is equivalent to the convention
?Gfo (H) ?Gfo (e-) 0.00 kcal/mole. - We then connect this SHE to any other electrode
representing a half-cell reaction and we can
obtain Eo for all half-cell reactions. This is
called the standard electrode potential.
15If we always write half-cell reactions with the
electrons on the right hand side, E0 tells us the
position of the reaction in the electromotive
series relative to SHE.
16THE NERNST EQUATION
- The value E0 refers to the EMF of a half-cell
reaction when all reactants are in the standard
state, e.g., for - Zn ? Zn2 2e-
- Eo is the EMF when aZn2 1.0. What if this is
not the case?
17- In this particular case
- IAP Zn2 and n 2
- so
At 25C we have in this particular case
Or in the most general case at 25C
18DEFINITION OF Eh
- We define Eh to be the EMF between a half-cell
reaction in any state, and the SHE. For example,
Eh for the zinc reaction above is given defined
by the overall reaction Zn 2H ? Zn2
H2(g) for which
However, for the SHE by definition, pH2 1 bar
and H 1 mol L-1, so
19STABILITY LIMITS OF WATER IN Eh-pH SPACE
- Upper limit
- H2O(l) ? 2H 1/2O2(g) 2e-
- Eh E0 0.0295 log (pO21/2H2)
- E0 ?Gro/(n?) -56.687/(223.06) 1.23 V
- Eh 1.23 0.0148 log pO2 - 0.0592 pH
- At the Earths surface, pO2 can be no greater
than 1 bar so - Eh 1.23 - 0.0592 pH
20- Lower limit
- 1/2H2(g) ? H e-
- Eh 0 0.059 log (H/pH21/2)
- Again, let pH2 1 bar.
- Eh -0.059 pH
21Eh-pH diagram depicting the limits of stability
of liquid water.
22Eh-pH diagram showing the redox conditions of
various natural environments.
23Eh-pH DIAGRAM FOR THE SYSTEM Cd-H2O-CO2
24START WITH H2O-CO2 SYSTEM
- H2CO30/HCO3- boundary
- H2CO30 ? HCO3- H
- ?Gro -140.24 - (-149.00) - (0.00) 8.76 kcal
mol-1 - log K -?Gro/(2.3025RT)
- -8760/(2.30251.987298.15) -6.42
By definition H2CO30 HCO3- so K H and
pH -log K 6.42.
25- HCO3-/CO32- boundary
- HCO3- ? CO32- H
- ?Gro -126.15 - (-140.24 ) - (0.00) 14.09 kcal
mol-1 - log K -?Gro/(2.3025RT)
- -14090/(2.30251.987298.15) -10.33
By definition HCO3- CO32- so K H and
pH -log K 10.33.
26- H2CO30/C(graphite) boundary
- C 3H2O ? H2CO30 4H 4e-
- ?Gro -149.00 - 3(-56.7) 21.10 kcal mol-1
- E0 ?Gro/(n?) 21.10/(423.06) 0.229 volts
We must assign a value to ?C. Here we assign ?C
10-3 M. Because H2CO30 is predominant, H2CO30 ?
?C.
27- HCO3-/C(graphite) boundary
- C 3H2O ? HCO3- 5H 4e-
- ?Gro -140.24 - 3(-56.7) 29.86 kcal mol-1
- E0 ?Gro/(n?) 29.86/(423.06) 0.324 volts
Because HCO3- is predominant, HCO3- ? ?C 10-3
M
28- CO32-/C(graphite) boundary
- C 3H2O ? CO32- 6H 4e-
- ?Gro -126.15 - 3(-56.7) 43.95 kcal mol-1
- E0 ?Gro/(n?) 43.95/(423.06) 0.476 volts
Because CO32- is predominant, CO32- ? ?C 10-3
M
29- CH4(aq)/C(graphite) boundary
- CH4(aq) ? C 4H 4e-
- ?Gro -(-8.28) 8.28 kcal mol-1
- E0 ?Gro/(n?) 8.28/(423.06) 0.0898 volts
Because CH4(aq) is predominant, CH4 ? ?C 10-3
M
30- CH4(aq)/HCO3- boundary
- CH4(aq) 3H2O(l) ? HCO3- 9H 8e-
- ?Gro -140.24 - (-8.28) - 3(-56.7) 38.14 kcal
mol-1 - E0 ?Gro/(n?) 38.14/(823.06) 0.207 volts
By definition CH4(aq) HCO3-, so
31- CH4(aq)/CO32- boundary
- CH4(aq) 3H2O(l) ? CO32- 10H 8e-
- ?Gro -126.15 - (-8.28) - 3(-56.7) 52.23 kcal
mol-1 - E0 ?Gro/(n?) 52.23/(823.06) 0.283 volts
By definition CH4(aq) CO32-, so
32Eh-pH diagram depicting fields of predominance
and stability in the system C-O-H.
33NOW ADD Cd
- Cd2/CdCO3(s) boundary (H2CO30 field)
- CdCO3(s) 2H ? Cd2 H2CO30
- ?Gro -149.00 - 18.55 - (-160.00) -7.55 kcal
mol-1 - log K -?Gro/(2.3025RT)
- 7550/(2.30251.987298.15) 5.53
We assign ?C 10-3 M and ?Cd 10-3 M. Now log K
2pH log H2CO30 log Cd2 5.53 2pH - 3
- 3 pH 5.77
34- Cd2/CdCO3(s) boundary (graphite field)
- Cd2 C 3H2O(l) ? CdCO3(s) 6H 4e-
- ?Gro -160.0 - (-18.55) - 3(-56.7) 28.65 kcal
mol-1 - E0 ?Gro/(n?) 28.65/(423.06) 0.311 volts
We assign ?Cd 10-3 M.
35- Cd2/CdCO3(s) boundary (CH4 field)
- Cd2 CH4(aq) 3H2O(l) ? CdCO3(s) 10H 8e-
- ?Gro -160.0 - (-18.55) - 3(-56.7) - (-8.28)
- 36.93 kcal mol-1
- E0 ?Gro/(n?) 36.93/(823.06) 0.200 volts
We assign ?Cd 10-3 M and ?C 10-3 M.
36- Cd(OH)2(s)/CdCO3(s) boundary (CO32- field)
- Cd(OH)2(s) CO32- 2H ? CdCO3(s) 2H2O(l)
- ?Gro -160.0 2(-56.7) - (-113.19) - (-126.15)
- -34.06 kcal mol-1
- log K -?Gro/(2.3025RT)
- 34060/(2.30251.987298.15) 24.97
We assign ?C 10-3 M. Now log K 24.97 2pH -
log CO32- 2pH 3.0 pH 10.98
37- Cd(OH)2(s)/CdCO3(s) boundary (CH4 field)
- Cd(OH)2(s) CH4(aq) H2O(l) ? CdCO3(s) 8H
8e- - ?Gro -160.0 - (-56.7) - (-113.19) - (-8.28)
- 18.17 kcal mol-1
- E0 ?Gro/(n?) 18.17/(823.06) 0.098 volts
We assign ?C 10-3 M.
38- Cd(OH)2(s)/Cd2 boundary
- Cd(OH)2(s) 2H ? Cd2 2H2O(l)
- ?Gro -18.55 2(-56.7) - (-113.19)
- -18.76 kcal mol-1
- log K -?Gro/(2.3025RT)
- 18760/(2.30251.987298.15) 13.75
We assign ?Cd 10-3 M. Now log K 13.75 log
Cd2 2pH -3 2pH pH 8.38
39- Cd(OH)2(s)/CdO22- boundary
- Cd(OH)2(s) ? CdO22- 2H
- ?Gro -67.97 - (-113.19)
- 45.22 kcal mol-1
- log K -?Gro/(2.3025RT)
- -45220/(2.30251.987298.15) -33.15
We assign ?Cd 10-3 M. Now log K -33.15 log
CdO22- - 2pH -3 2pH pH 15.08 This
boundary does not plot on our diagram.
40Eh-pH diagram depicting fields of predominance
and stability in the system Cd-C-O-H.
41Eh-pH diagram depicting fields of predominance
and stability in the system Cd-C-S-O-H. The
conditions are ?C 10-3 M, ?S 10-3 M, ?Cd
10-8 M