Title: MS 271 ED 571
1MS 271 / ED 571
- Syllabus
- Problem solving
- Questioning
- Vocabulary
- Fractions
- Journal
- Homework
2Website
3Required Textbooks Bits and Pieces II (CMP
Prentice Hall), About Teaching Mathematics A
K-8 Resource (Marilyn Burns, 2nd Ed., Math
Solutions Publications, 2000.), Thinking
Mathematically (Carpenter, Franke and Levi
Heinemann). MS 271/ED571 grading criteria is
listed below. Changes may be made at the
instructors discretion. Late assignments will
have 10 of the points deducted. Homework
Assignments There will be ten assignments each
worth 5 points. Article Reviews There will be
two required article reviews from pre-k through
8th grade journals. Forms will be provided.
Each article review will be worth 10
points. Literature Connection Students will be
required to find two childrens literature
selections (not clearly math related) and make a
mathematical connection. Each selection will
need to include a brief written description of
the literature piece, appropriate grade level and
an explanation of the mathematical connection.
Each will be worth 10 points. WebQuests You
will complete one webquest (10 points) and create
one webquest (40 points). Midterm Exam This
will be an in-class exam worth 100 points.
4- In-Class Journal Assignments There will be up
to ten short, in-class reflective writing pieces.
Grades will be based on completeness. The
journals will each be worth 3 points. - Field Experience This course includes a
required field experience component. This
involves administering an assessment and teaching
a series of lessons to an individual student
between pre-k and 8th grade. All students must
spend at least 5 sessions with their student.
There should be copies of all materials used with
your student. See the additional description of
this requirement. This activity will be worth 50
points. - Participation There will be 2 points per class
period awarded for attendance and class
participation (one bonus day ?). - Game Students will be required to create one
game for skill reinforcement worth 10 points. - Seminar Activity All graduate students (ED 571
ONLY) are required to research an area of
selected mathematical education from a list of
chosen topics (technology in the classroom, math
anxiety, gender issues or gifted education as it
relates to math). Based on this research
graduate students will direct a portion of a
class session (20-30 minutes) on their topic.
This will count 50 points. - Final Exam This will be an in-class exam worth
150 points.
5Tentative Schedule August 22 Course
requirements, questioning kids, fraction
practice August 29 Fraction applications and
lesson planning hmwk 1 due September 5 No
class Labor Day September 12 Kids mistakes
lit. conn. 1 and hmwk 2 due September 19 BP
2 Activities hmwk 3 due September 26 Scale
factor and proportion article review 1 and hmwk
4 due October 3 Technology Activities lit.
conn. 2 and hmwk 5 due October 10 Mid Term
Exam webquests due October 17 No class mid
semester break October 24 BP 2 Activities
continued article review 2 October 31
Qualities and game day game due and hmwk 6
due November 7 Math Skills hmwk 7
due November 14 Curriculum field experience
and hmwk 8 due November 21 No class November
28 Math Anxiety, G/T, gender presentations
hmwk 9 due December 5 MEAP and other
assessments hmwk 10 due December 12 Final Exam
6Field Experience
- What you do
- Â Â Â Â Â Â Â you must meet with your student for a
minimum of five 45 minute sessions - Â Â Â Â Â Â Â you may work with any student between 5
years old and 8th grade - Â Â Â Â Â Â Â you may choose any ability level student
- Â Â Â Â Â Â Â you must work with a planned course of
study (pick a topic and stick with it) - Â Â Â Â Â Â Â you need to make and administer an
assessment prior to working with your student
and after you have completed the sessions (it
should be short and focused on the benchmarks
you plan to address in your sessions) - Â Â Â Â Â Â Â tutoring needs to be in math
- Â Â Â Â Â Â Â all instruction needs to me correlated
with the Michigan Mathematics Curriculum
Framework and Benchmarks (identify the
benchmarks you are focusing on)
7- What you need to hand in
- Â a paragraph written by your student about the
tutoring experience - Â a log of dates, hours, activities and
correlation to MCF Benchmarks for each session - Â a brief reflection on each session (a
paragraph) - Â the assessment you administered to your student
- Â a report on the field experience (what you
learned, what surprised you, how much growth you
saw in your student)
8The Mango Problem
- One night the king couldnt sleep, so he went
down into the royal kitchen, where he found a
bowl full of mangos. Being hungry, he took 1/6
of the mangos. - Later that same night, the queen was hungry and
couldnt sleep. She too found the mangos and
took 1/5 of what the king had left. - Still later, the first princess awoke, went to
the kitchen and ate ¼ of the remaining mangos. - Even later, her brother, the first prince, ate
1/3 of what was then left. - Finally, the second princess at ½ of what was
left, leaving only three mangos for the servants.
- HOW MANY MANGOS WERE ORIGINALLY IN THE BOWL?
9Questioning Kids About Math
- Characteristics of thought provoking questions
- Â Â Â Â Â Â Requires more than yes/no answer
- Â Â Â Â Â Â Causes the student to defend their
solution - Â Â Â Â Â Â Extends the initial challenge
- Â Â Â Â Â Â Gives you insight into their approach
- Â Â Â Â Â Â Allows for another response
- Possible questions to ask students
- Â Â Â Â Â Â How did you get that answer?
- Â Â Â Â Â Â Why did you do that?
- Â Â Â Â Â Â How do you know you are correct?
- Â Â Â Â Â Â How else could you have solved the
problem?
10Vocabulary
Word
Definition
Notes
Illustration
11- The bottom number in a fraction
- It tells how many are in the whole
Denominator
1/4 4 is the denominator
Denominator and Down both start with D
12Fraction Strips
- Name each fraction and try to find as many
patterns as you can. What do you notice about
the fractions?
13Benchmark Fractions
- Common fractions (nice numbers) used to estimate
other fractions or compare sizes. - Generally we use ½, 0 and 1 to estimate the value
of fractions (over or under ½) - Ex estimate the value of 9 3/8 14 7/9.
14Reflection Questions
- Find 6 fractions equivalent to 2/3 and explain
how you found them. - How can you decide whether a given fraction is
closer to 0, ½ or 1? - How can you compare any two fractions to decide
which is larger?
15Fraction Operations
- When adding and subtracting you ALWAYS need a
common denominator (the LCM of the denominators). - When multiplying and dividing you do NOT need a
common denominator. - When multiplying fractions multiply the
numerators and then the denominators. - When dividing fractions invert the second
fraction (find its reciprocal) and multiply. - When multiplying and dividing fractions always
change mixed numbers to improper fractions.
16Fraction Practice
17Fraction Models
- Areashow a problem where the area of an object
determines the fraction - Ex a pan of brownies where a section is missing,
find the corresponding fractions - Seta fraction that is determined by the amount
of items - Ex a bag with 10 pennies and you take out ½ of
the pennies - Lengtha problem that uses distance to determine
the fraction represented - Ex use fraction strips to find equivalent
fractions
18Journal 1
- List the first three words that come to mind when
I say math class - List five things you would like to learn about in
this class (or situations that worry you about
your own classroom). - Tell me something interesting about you.
- Ask any questions that you may have for me.
- Put your journal on the filing cabinet when you
finish and have a great week!
19You Survived