Title: V'Voloshin: Examples of Mixed Hypergraphs
1V.Voloshin Examples of Mixed Hypergraphs
- pictures speak louder than words...
2Drawing a graph G(V,E)
- V1,2,3,4,5
- E1,2,2,3,3,4,4,5,5,1,1,4,3,5
1
5
2
adjacent vertices
3
4
3Coloring of G(V,E)
- V1,2,3,4,5
- E1,2,2,3,3,4,4,5,5,1,1,4,3,5
1
5
2
?(G)3
3
4
4Drawing a hypergraph
- H(X,D), X1,2,3,4, D1,2,3,2,3,4,1,4
D1,D2,D3,
2
D1
3
1
D3
D2
4
5Coloring a hypergraph
- H(X,D), X1,2,3,4, D1,2,3,2,3,4,1,4
D1,D2,D3,
2
D1
3
1
D3
?(H)2
D2
4
6Drawing a mixed hypergraph H(X,C,D)
- X1,2,3,4, C1,2,4C1,
- D2,3,4,2,4D1,D2
3
C1
2
D2
D1
1
4
7Uncolorable mixed hypergraphs
D
the smallest uncolorable mixed hypergraph
1
2
C
violated C-edge
1
D1
C2
C1
uncolorable mixed hypergraph H(X,C,D)
2
violated D-edge
D2
D4
1
1
D3
8Coloring mixed hypergraph H(X,C,D) numbers
colors
- Proper 2-,3-,?-coloring
- Strict 2-coloring
1
C1
1
D1
D2
1
2
9Chromatic numbers
C
1
C
1
1
3
1
1
D
2
D
2
?(H)3
?(H)2
10Uniquely colorable mixed hypergraphs
H2(X,C,D)
H1(X,Ø,D)
C
1
D
1
D
2
D
D
2
D
D
C
D
C
3
2
1
1
R(H1)(0,0,1)
? ? 3
R(H2)(0,1,0,0,0)
? ? 2
11Chromatic polynomial
C
1
C
1
1
C
D
D
D
2
3
3
2
3
2
H
H
H
R (H)(0,3,0)
3 feasible partitions
3 2! strict 2-colorings
If we have ?2 colors, then the number P (H, ?)
of proper ?-colorings is 3 2! ?(?-1)/2! 3
?(?-1)3?(2)
12How to get a gap? Step 1
R (H )(0,r2,0,0)
C
Feasible set S2
C
D
C
C
13How to get a gap? - Step 2
Construct
R (H ) (0, r2, r3, 0,0,0)
can
can
Feasible set S2,3
can
14How to get a gap? - Step 3
Each subset can
R (H)(0,r2, 0,r4,0,0,0,0)
Feasible set S2,4
We have broken it!!!
15The smallest mixed hypergraph with a gap, H2,4
(Jiang, Mubayi, Tuza, Voloshin, West)
D
Bi-edges
R(H2,4)(0,4,0,1,0,0)
D
C
S(H)2,4
C
C
16The smallest 3-uniform bihypergraph with a gap
(L.Gionfriddo, V.Voloshin, 2000)
R(H)(0,12,0,3,0,0,0), S(H)2,4
17Planar mixed hypergraph with a gap, H 2,4
(Kobler, Kundgen, 2001)
D
D
C
C
D
D
D
C
C
D
R(H2,4)(0,1,0,1,0,0), S(H)2,4
18THANK YOU!