Micro-fluidic Applications of - PowerPoint PPT Presentation

About This Presentation
Title:

Micro-fluidic Applications of

Description:

DC requires Faradaic reactions = hydrolysis. Need large V for ... Voltmeter. Function Generator. Viewing. Resistor. KCl in. PDMS. Microchannel. Platinum. Wire ... – PowerPoint PPT presentation

Number of Views:100
Avg rating:3.0/5.0
Slides: 15
Provided by: jeremyl8
Learn more at: https://math.mit.edu
Category:

less

Transcript and Presenter's Notes

Title: Micro-fluidic Applications of


1
Micro-fluidic Applications of Induced-Charge
Electro-osmosis
Jeremy Levitan Mechanical Engineering, MIT
Todd Squires Applied Mathematics, CalTech Martin
Schmidt Electrical Engineering, MIT
Martin Bazant Applied Mathematics, MIT
Todd Thorsen Mechanical Engineering, MIT
2
Pumping in Micro-Fluidics
  • Mechanical pumping
  • Robust
  • Poor scaling U h2 ?P/ ?
  • Bulky external pressure source
  • Shear dispersion
  • Capillary electro-osmosis
  • Material sensitive
  • Plug flow U 100 um/sec in E 100 V/cm
  • Linear ltUgt 0 in AC
  • DC requires Faradaic reactions gt hydrolysis
  • Need large V for large E along channel

3
Mixing in Micro-Fluidics
  • Diffusion down a channel
  • with EO
  • Jacobson, McKnight, Ramsey (1999)
  • Serpentine channels
  • Mengeaud et al (2002)
  • Geometric splitting
  • Schonfeld, Hessel, and Hofmann (2004), Wang et al
    (2002)
  • Passive recirculation
  • Chung et al (2004)
  • Pressure-driven flow with chaotic streamlines
  • Johnson et al (2002), Stroock et al (2002)
  • AC Electro-osmosis
  • Studer, Pepin, Chen, Ajdari (2002)
  • Electrohydrodynamic Mixing
  • Oddy, Santiago and Mikkelsen (2001), Lin et al,
    Santiago (2001)
  • Micro peristaltic pumps (moving walls)

(Schilling 2001)
(Stroock 2002)
4
Induced-Charge Electro-Osmosis
Nonlinear slip at a polarizable surface
Example An uncharged metal cylinder in a
suddenly applied DC field
Metal sphere V. Levich (1962) N. Gamayunov, V.
Murtsovkin, A. Dukhin, Colloid J. USSR (1984).
E-field, t 0
E-field, t charging time
Steady ICEO flow
?induced E a
MZB TMS, Phys, Rev. Lett. 92, 0066101 (2004)
TMS MZB, J. Fluid. Mech. 509, 217 (2004).
5
A Simple Model System
  • 100um dia. platinum wire transverse to PDMS
    polymer microchannel (200um tall, 1mm wide)
  • 0.1 - 1mM KCl with 0.01 by volume 0.5um
    fluorescent latex particles
  • Sinusoidal voltage (10 - 100V) excitation, 0 DC
    offset Applied 0.5cm away from center wire via
    gold and/or platinum wires

V
Cross-section of experiment
6
Simple Mathematical Model
1. Electrochemical problem for the induced zeta
potential
Bazant, Thornton, Ajdari, Phys. Rev. E (2004)
Steady-state potential, electric field after
double layer charging
2. Stokes flow driven by ICEO slip
Steady-state Stokes flow
Simulation is of actual experimental geometry
7
Voltmeter
Function Generator
Viewing Resistor
Platinum Wire
Viewing Plane
KCl in PDMS Microchannel
Inverted Optics Microscope
Bottom View
200 um X 1 mm X 1mm Channel
8
ICEO Around A 100 µm Pt Wire
9
Particle Image Velocimetry
500 nm seed particles
Slide used with permission of S. Devasenathipathy
10
PIV Mean Velocity Data
  • PIV measurement with 0.01 volume dielectric
    (fluorescent) tracer particles
  • Correct scaling, but inferred surface slip
    smaller from simple theory by 10

Metal colloids Gamayunov, Mantrov, Murtsovkin
(1992)
11
Frequency Dependence
  • At fast frequencies, double layer not fully
    charged
  • Consistent with RC charging
  • U U0/(1 (?/?c)2)
  • ?c 2 ? ?d a/D
  • 1/?c 3 ms

Experiments in 1 mM KCl at 75 V
12
Extensions to Model
All reduce predicted velocities
  • Surface Capacitance/Contamination
  • multi-step cleaning for metal surfaces
  • Surface Conductance
  • Visco-electric effect

13
Current Work
  • Fixed potential posts
  • Post-array mixers
  • Asymmetric objects
  • Integration with microfluidic devices --
  • microchannels and valves
  • DNA hybridization arrays

14
Induced-Charge Electro-osmosis
  • Demonstrated non-linear electro-osmosis at
    polarizable (metal) surfaces
  • Sensitive to frequency, voltage, etc.
  • At low concentration (lt1mM), no concentration
    dependence, but U decreases at higher c
  • Advantages in microfluidics
  • Time-dependent local control of streamlines
  • Requires small AC voltages, transverse to
    channels
  • Compatible with silicon fabrication technology
  • Disadvantages
  • Sensitive to surface contamination, solution
    chemistry
  • Relatively weak for long-range pumping

Additional movies/data http//media.mit.edu/j
levitan/iceo.html
Papers http//math.mit.edu/bazant
Write a Comment
User Comments (0)
About PowerShow.com