Title: Equilibrium Asset Pricing
1Equilibrium Asset Pricing
- Michael J. Brennan
- June 2008
2Three standard assumptions
- Market prices are efficient
- Prices are set by rational expected utility
maximizing individuals - Returns are serially independent
3Three papers
- Asset Pricing and Mispricing
- With Ashley Wang
- Agency and Asset Pricing
- With Feifei Li
- Work in progess
4A. Market prices are efficient
5Unconditional Rational Prices inconsistent with
Unconditional Rational Expected Returns
- Unconditional rational prices with random
mispricing - Proof
6A Basic Result
- If
- mispricing is uncorrelated with fundamentals, and
- prices are unconditionally rational, then
- Expected returns exceed rational expected returns
a mispricing return premium
7- A Simple Example
- Perpetual bond with coupon 4 and market
interest rate 4 P 100 - Bond trades at 90, 100, 110
8- A Simple Example
- Annual Transition probabilities
- Steady state probabilities
- Expected Price 100 (Unconditional rational
pricing) - Expected rate of return 4.42
90 100 110
110 0.05 0.9 0.05
100 0.3 0.4 0.3
90 0.05 0.90 0.05
0.20 0.60 0.20
9A More General Model
10Components of Return Bias, B B1 B2
- B2 gt 0 Over-reaction
- B2 lt 0 Under-reaction
- Assuming z is stationary
11Empirical Analysis
- Mispricing model
- AR1 Kalman filter estimates
- Data
- NYSE/AMEX/Nasdaq stocks January 1962-Dec 2004
12AR1 Mispricing Estimates
- Each January from 1967 to 2004 KF used to
estimate mispricing return bias from FF3
residuals (e) over previous 60 months assuming
AR1 model
Assumes mispricing uncorrelated with
fundamentals FF3 et
13(No Transcript)
14(No Transcript)
15(No Transcript)
16(No Transcript)
17(No Transcript)
18(No Transcript)
19 Are returns related to our empirical estimate of
theoretical return bias B1 ?
2010 Portfolios formed in January of each year
- Based on estimates of B1
- Equally weighted and not rebalanced during year
- Estimated MRP of portfolios runs from 14bp to 6
p.a. - High bias portfolios
- Higher
- No difference in
- ?Firms with highest fundamental volatility have
most mispricing
21Annualized FF3 alphas and Bias EstimatesJanuary
1967 to December 2004
- ?z ranges from 1.08 to 16.70
Difference (Hi-Lo) 8.64 p.a. t-stat(Hi-Lo)
3.25
22Conclusions
- A mean zero stochastic mispricing error can drive
expected return away from fundamental return - Lower
- For mispricing independent of fundamentals, more
transient and volatile mispricing leads to bigger
return premium - Slow adjustment to information can potentially
explain - very high liquidity premium since illiquid stocks
are those most subject to mispricing
23B. Prices are set by rational expected
utility maximizing individuals
24Agency and Asset Pricing
- CAPM with
- Individual mean-variance investors
- Agents
- also mean-variance but with respect to return
relative to (individual) benchmark portfolio - Equilibrium
- Two beta capm
- market beta positive risk premium
- (aggregate) benchmark beta negative risk
premium
25- betas w.r.t market
and benchmark residual -
- Note the benchmark portfolio is riskless
asset for agents - different agents may have different benchmarks
aggregate benchmark portfolio
26Empirical Analysis
- Form 25 value weighted portfolios in January each
year from 1931 to 2006 based on - CRSP value market weighted beta
- beta w.r.t. SP500 (residual)
- Hold for 1 year without rebalancing
- Calculate alphas of linked returns
- F-M analysis to track rewards to market and
SP500 (residual) betas
27(No Transcript)
28- The agency induced benchmark effect is
- Confined to large firms and shows up only in
value weighted portfolios - Correlation between proportional institutional
ownership and log firm size is 0.63 (Gompers and
Metrick, 2001) - Confined to post 1970 period
- in recent years risk-adjusted measures of
performance have been receiving considerable
attention outside the academic journals.. Bank
Administration Institute study of 1968..complete
evaluation must include an assessment of
risk.SEC Study of 1971 ..performance measures
must be adjusted for volatility.. (Klemkosky,
1973)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32The results (for value weighted portfolios) are
robust to measurement wrt FF 3-factor model
33(No Transcript)
34Conclusion
- Significant agency/benchmark effect
- Starts from around 1970
- Only apparent for large firms
- Robust to FF 3-factor model
35C. Security Returns are iid
- One period expected return is sufficient
statistic for n period expected return - Risk should be measured using one period returns
- How long is period
- Instantaneous Merton (1971)
- One month (CRSP)
36First order autocorrelations of 25 FF Size and
B/M portfoliosJuly 1926- February 2006
37Effect of autocorrelation on n-period expected
returns
- Annualized n month returns
-
- Independent of n if returns iid
38Standardized annualized returns on FF 25
portfolios as a function of the holding period, n
39Expected returns vary with holding period Do
betas also vary with holding period?
40Betas of FF 25 portfolios as function of holding
period
41Standardized betas as a function of the holding
period (months) for FF25 portfolios 1926-2006
42The issue
- At what frequency (if any) do we expect CAPM to
hold? - High frequency if low transaction costs
- Low frequency if high transaction costs
- High and low frequency ??
- An empirical issue!
43Cross-section regressions for n month returns
44Annualized lam_0 for different holding periods
for FF 25 portfolios 1926-2006
45Scaled Empirical Market Price of Risk as a
function of holding period
46RSQ from Cross Section Regression as function of
holding period (months)
47The 1 month CAPM
48The 12 month CAPM
49Conclusion
- Single period of CAPM is arbitrary
- Returns are not iid
- Betas and expected returns both depend on holding
period - Fit of CAPM improves with assumed holding period
50Summary
- Random mispricing affects (risk-adjusted) average
returns - Average returns affected by agency/benchmark
effects - Returns not iid
- Expected returns and betas depend on holding
period - Fit of CAPM improves with assumed holding period