Title: Image Compression Based on Regression Equation
1Image Compression Based on Regression Equation
- Advisor H. C. Wu, Y. K. Chan
- Speaker Hsin-Nan Tsai (???)
- Date May 4, 2005
2Outline
- Introduction
- The proposed method
- Experimental results
- Conclusions
3Introduction
- YIQ model
- Quadtree structure
- Edge detection
- Quadratic regression equation
4Image compression
5Image compression (cont.)
1
0
0
1
0
0
0
0
0
Breadth First Traversal Order
treelist 1 0 0 1 0 0 0 0 0
6Image compression (cont.)
?X
129 192 188 191
123 192 188 185
122 178 180 183
126 173 175 175
?Y
If PCD gt DiffTH Count Count 1
If Count gt CountTH quadtree()
7Image compression (cont.)
- Quadratic regression equation
The coefficients a0, a1, and a2 of this equation
can be figured out by following three equations
i is the i-th pixel in an image block, and n is
the number of pixels in the image block.
8Image compression (cont.)
- Quadratic regression equation
The coefficients b0, b1, and b2 of this equation
can be figured out by following three equations
i is the i-th pixel in an image block, and n is
the number of pixels in the image block.
9Image compression (cont.)
colorlist
10Image compression (cont.)
256
100 251 3 25
12
JPEG compression
256
Y values
11Image compression (cont.)
Compressed file treelist colorlist Ydata
12Image decompression
Compressed file treelist colorlist Ydata
r is the numbers of 1-bits s is the numbers of
0-bits
3 r 1 s
13Image decompression (cont.)
Compressed file colorlist Ydata
6 s
14Image decompression (cont.)
256
101 253 6 25
12
JPEG Decompression
256
Y values
15Image decompression (cont.)
256
1
0
0
1
0
0
0
0
0
1 0 0 1 0 0 0 0 0
256
Y values
16Image decompression (cont.)
- Substitution coefficients
root(256x256)
1
256
1
0
0
0
128x128
128x128
128x128
128x128
256
0
0
0
0
YIQ values
64x64
64x64
64x64
64x64
17Image decompression (cont.)
256
256
256
256
YIQ values
Lena
18Experimental results
19Experimental results (cont.)
20Experimental results (cont.)
21Experimental results (cont.)
The PSNRs of the testing images encoded by JPEG
method in different CRs in different CRs
3 4 5 6 7 8 9 10 11 12 13
F16 37.07 36.59 36.12 35.67 35.23 34.81 34.40 34.00 33.62 33.25 32.89
GIRL5 36.12 35.83 35.55 35.27 35.00 34.74 34.49 34.24 34.00 33.76 33.53
HOUSE 34.38 34.17 33.96 33.76 33.56 33.37 33.18 33.00 32.82 32.64 32.47
SAILBOAT 33.44 32.91 32.40 31.91 31.44 30.99 30.56 30.15 29.75 29.37 29.01
SPLASH 36.94 36.63 36.33 36.04 35.76 35.48 35.22 34.95 34.70 34.45 34.21
CR
Image
22Experimental results (cont.)
The PSNRs of the testing images encoded by our
method in different CRs
3 4 5 6 7 8 9 10 11 12 13
F16 39.13 38.32 37.52 36.72 35.91 34.65 33.43 32.17 30.89 30.11 28.31
GIRL5 39.04 38.23 37.41 36.60 35.82 35.08 34.22 33.30 32.17 30.38 27.98
HOUSE 37.50 37.12 36.73 36.35 35.97 35.59 35.12 34.64 34.07 33.41 32.80
SAILBOAT 34.71 34.00 33.29 32.48 31.52 30.53 29.73 29.04 28.15 27.13 25.95
SPLASH 40.18 39.58 38.99 38.39 37.80 37.19 36.55 35.74 34.84 33.60 31.84
CR
Image
23Experimental results (cont.)
- Blocking and Gibbs effects
24Conclusions
- Comparing to JPEG, the proposed method has good
performance with low compression rate
25????????????????
- Speaker Jun-Dong Chang
- Advisor Yung-Kuan Chan, Hsien-Chu Wu
- Date 2005/05/04
26Introduction
- Automatic recognition reduces the carelessness
and mistakes caused in artificial recognition. - Initial Contour Segmentation is a pre-process of
ACM (Active Contour Model) System. - Initial Contour Segmentation (Background,
Cytoplasm, Nucleus)
27Color Texture Analyzing Training Image
28Color Texture Analyzing Training Image
(cont.)
Background
Cytoplasm
Nucleus
29Regression Function (cont.)
Background
30Regression Function (cont.)
Cytoplasm
31Regression Function (cont.)
Nucleus
32Initial Contour Segmentation
arg(min(Dx))
Background
Query Image
i arg(min(Dx)), for x b, c, n.
33Initial Contour Segmentation (cont.)
Background
34Initial Contour Segmentation (cont.)
Cytoplasm
35Initial Contour Segmentation (cont.)
Nucleus
36Experimental Results Image 1
37Experimental Results Image 2
38Experimental Results Image 3
39Experimental Results Image 4
40Conclusions
- Most of blocks are segmented at the correct
layers. - Blocks of Background Layer are segmented to
Cytoplasm Layer. - Regression Function just analyses 2D relation.
- We have to correct segmentation errors to improve
the accuracy of initial contour segmentation.
41Future Work
- SVM (Support Vector Machine)