Matlab Statistics - PowerPoint PPT Presentation

1 / 22
About This Presentation
Title:

Matlab Statistics

Description:

cdf Cumulative distribution function. inv Inverse cumulative distribution ... cumulative distribution function. norminv inverse cumulative distribution ... – PowerPoint PPT presentation

Number of Views:210
Avg rating:3.0/5.0
Slides: 23
Provided by: mls1
Category:

less

Transcript and Presenter's Notes

Title: Matlab Statistics


1
Matlab Statistics
  • Statistics toolbox
  • Probability distributions
  • Hypothesis tests
  • Linear regression and response surface modeling
  • Statistical process control
  • Design of experiments

2
Statistics Toolbox Capabilities
  • Descriptive statistics
  • Statistical visualization
  • Probability distributions
  • Hypothesis tests
  • Linear models
  • Nonlinear Models
  • Multivariate Statistics
  • Statistical process control
  • Design of experiments
  • Hidden Markov Models

3
Probability Distributions
  • Continuous distributions for data analysis 21
    distributions
  • Includes normal distribution
  • Continuous distributions for statistics 6
    distributions
  • Includes chi-square and students t distributions
  • Discrete distributions 8 distributions
  • Includes binomial and Poisson distributions
  • Multivariable distributions 10 distributions
  • Includes multivariable extension of normal
    distribution
  • Each distribution has functions for
  • pdf Probability density function
  • cdf Cumulative distribution function
  • inv Inverse cumulative distribution
  • functionsstat Distribution statistics function
  • fit Distribution fitting function
  • like Negative log-likelihood function
  • rnd Random number generator

4
Normal Distribution Functions
  • normpdf probability distribution function
  • normcdf cumulative distribution function
  • norminv inverse cumulative distribution
    function
  • normstat mean and variance
  • normfit parameter estimates and confidence
    intervals for normally distributed data
  • normlike negative log-likelihood for maximum
    likelihood estimation
  • normrnd random numbers from normal distribution

5
Confidence Intervals Example
  • Polymer molecular weight (scaled by 10-5)
  • gtgt muhat,sigmahat,muci,sigmaci
    normfit(data,alpha)
  • data vector or matrix of data
  • alpha confidence level 1-alpha
  • muhat estimated mean
  • sigmahat estimated standard deviation
  • muci confidence interval on the mean
  • sigmaci confidence interval on the standard
    deviation
  • gtgt x 1.25 1.36 1.22 1.19 1.33 1.12 1.27 1.27
    1.31 1.26
  • gtgt muhat,sigmahat,muci,sigmaci
    normfit(x,0.05)
  • muhat 1.2580
  • sigmahat 0.0697
  • muci 1.2081
  • 1.3079
  • sigmaci 0.0480
  • 0.1273

6
Hypothesis Tests
  • 17 hypothesis tests available
  • chi2gof chi-square goodness-of-fit test. Tests
    if a sample comes from a specified distribution,
    against the alternative that it does not come
    from that distribution.
  • ttest one-sample or paired-sample t-test. Tests
    if a sample comes from a normal distribution with
    unknown variance and a specified mean, against
    the alternative that it does not have that mean.
  • vartest one-sample chi-square variance test.
    Tests if a sample comes from a normal
    distribution with specified variance, against the
    alternative that it comes from a normal
    distribution with a different variance.

7
Mean Hypothesis Test Example
  • gtgt h ttest(data,m,alpha,tail)
  • data vector or matrix of data
  • m expected mean
  • alpha confidence level 1-alpha
  • Tail left (left handed alternative), right
    (left handed alternative) or both (two-sided
    alternative)
  • h 1 (reject hypothesis) or 0 (accept
    hypothesis)
  • Measurements of polymer molecular weight
  • Hypothesis m0 1.3 instead of m1 1.2
  • gtgt h ttest(x,1.3,0.05,'left')
  • h 1

8
Variance Hypothesis Test Example
  • gtgt h vartest(data,v,alpha,tail)
  • data vector or matrix of data
  • v expected variance
  • alpha confidence level 1-alpha
  • Tail left (left handed alternative), right
    (left handed alternative) or both (two-sided
    alternative)
  • h 1 (reject hypothesis) or 0 (accept
    hypothesis)
  • Hypothesis s2 0.0049 and not a different
    variance
  • gtgt h vartest(x,0.0049,0.05,'both')
  • h 0
  • gtgt h vartest(x,0.0049,0.9,'both')
  • h 1

9
Goodness of Fit Example
  • gtgt h chi2gof(data)
  • data vector or matrix of data
  • h 1 (reject hypothesis) or 0 (accept
    hypothesis)
  • Default values alpha 0.05 nbins 10
  • gtgt h chi2gof(x)
  • Warning After pooling, some bins still have
    low expected counts. The chi-square
    approximation may not be accurate.
  • gtgt x90x-0.2 x-0.15 x-0.1 x-0.05 x x0.05 x0.1
    x0.15 x0.2
  • gtgt h chi2gof(x90)
  • h 0

10
Linear Models
  • Linear regression
  • Multiple linear regression build linear models
    between a group of input variables (factors) and
    an output variable (response)
  • Quadratic response surface models build
    response surface models between a group of input
    variables (factors) and an output variable
    (response)
  • Stepwise regression determine the most
    significant terms (linear, interaction,
    quadratic) to include in a regression model
  • Generalized linear models techniques for
    nonlinear models linear in the unknown parameters
  • Robust and nonparametric methods techniques
    that are insensitive to data outliers (robust) or
    do not assume any underlying distribution
    (nonparametric)
  • Analysis of variance determine whether data
    from several groups have a common mean

11
Linear Regression Example
  • gtgt b,bint regress(y,x)
  • x vector or matrix of input values
  • y vector of output values
  • b linear model slope and intercept
  • bint 95 confidence limits on the slope and
    intercept
  • Reaction rate data
  • gtgt x 0.1 0.3 0.5 0.7 0.9 1.2 1.5 2.0
  • gtgt x x ones(size(x))
  • gtgt y 2.3 5.7 10.7 13.1 18.5 25.4 32.1 45.2
  • gtgt b,bint regress(y,x)
  • b 22.5315
  • -1.1533
  • bint 21.0040 24.0590
  • -2.8038 0.4972

12
Response Surface Model Example
  • gtgt rstool(x,y,model)
  • x vector or matrix of input values
  • y vector or matrix of output values
  • model linear (constant and linear terms),
    interaction (linear model plus interaction
    terms), quadratic (interaction model plus
    quadratic terms), pure quadratic (quadratic
    model minus interaction terms)
  • Creates graphical user interface for model
    analysis
  • VLE data liquid composition held constant
  • x 300 1 275 1 250 1 300 0.75 275 0.75 250
    0.75 300 1.25 275 1.25 250 1.25
  • y 0.75 0.77 0.73 0.81 0.80 0.76 0.72
    0.74 0.71

13
Response Surface Model Example cont.
  • gtgt rstool(x,y,'linear')
  • gtgt beta 0.7411 (bias)
  • 0.0005 (T)
  • -0.1333 (P)
  • gtgt rstool(x,y,'interaction')
  • gtgt beta2 0.3011 (bias)
  • 0.0021 (T)
  • 0.3067 (P)
  • -0.0016 (TP)
  • gtgt rstool(x,y,'quadratic')
  • gtgt beta3 -2.4044 (bias)
  • 0.0227 (T)
  • 0.0933 (P)
  • -0.0016 (TP)
  • -0.0000 (TT)
  • 0.1067 (PP)

14
Statistical Process Control
  • Can produce a wide variety of quality control
    charts
  • gtgt controlchart(data,param1,val1,param2,val2,...)
  • data data matrix with each row a subgroup of
    measurements containing replicate observations
    taken at the same time and the rows in time
    order.
  • param, val matching sets of adjustable
    parameters and their values
  • charttype xbar (mean, default), s
    (standard deviation) or i (individual
    observation)
  • nsigma number of sigma multiples from the
    center line (default 3)
  • Many other options available

15
Control Chart Example
  • gtgt load parts
  • gtgt who
  • Your variables are
  • runout
  • gtgt controlchart(runout)
  • gtgt controlchart(runout,'chart','s')

16
Design of Experiments
  • Full factorial designs
  • Fractional factorial designs
  • Response surface designs
  • Central composite designs
  • Box-Behnken designs
  • D-optimal designs minimize the volume of the
    confidence ellipsoid of the regression estimates
    of the linear model parameters

17
Full Factorial Designs
  • gtgt d fullfact(L1,,Lk)
  • L1 number of levels for first factor
  • Lk number of levels for last (kth) factor
  • d design matrix
  • gtgt d ff2n(k)
  • k number of factors
  • d design matrix for two levels
  • gtgt d ff2n(3)
  • d
  • 0 0 0
  • 0 0 1
  • 0 1 0
  • 0 1 1
  • 1 0 0
  • 1 0 1
  • 1 1 0
  • 1 1 1

18
Fractional Factorial Designs
  • gtgt d,conf fracfact(gen)
  • gen generator string for the design
  • d design matrix
  • conf cell array that describes the confounding
    pattern
  • gtgt x,conf fracfact('a b c abc')
  • x
  • -1 -1 -1 -1
  • -1 -1 1 1
  • -1 1 -1 1
  • -1 1 1 -1
  • 1 -1 -1 1
  • 1 -1 1 -1
  • 1 1 -1 -1
  • 1 1 1 1
  • conf
  • 'Term' 'Generator' 'Confounding'
  • 'X1' 'a' 'X1'
  • 'X2' 'b' 'X2'
  • 'X3' 'c' 'X3'

19
Fractional Factorial Designs cont.
  • gtgt gens fracfactgen(model,K,res)
  • model string containing terms that must be
    estimable in the design
  • K 2K total experiments in the design
  • res resolution of the design
  • gen generator string for use in fracfact
  • gtgt fracfactgen('a b c d e f g',4,4)
  • ans
  • 'a'
  • 'b'
  • 'c'
  • 'd'
  • 'bcd'
  • 'acd'
  • 'abd'

20
Central Composite Designs
  • gtgt d ccdesign(nfactors,param1,val1,param2,val2,.
    ..)
  • nfactors number of factors
  • d design matrix
  • param, val matching sets of adjustable
    parameters and their values
  • fraction fraction of full factorial design for
    cube portion expressed as an exponent of ½ 0
    (full, default), 1 (½ design), 2 (¼ design)
  • type inscribed, circumscribed (default),
    or faced
  • center' number of center points m (force m
    center points), orthogonal (achieve orthogonal
    design, default), uniform (achieve uniform
    precision)

21
Central Composite Designs cont.
  • gtgt d ccdesign(2)
  • d
  • -1.0000 -1.0000
  • -1.0000 1.0000
  • 1.0000 -1.0000
  • 1.0000 1.0000
  • -1.4142 0
  • 1.4142 0
  • 0 -1.4142
  • 0 1.4142
  • 0 0
  • 0 0
  • 0 0
  • 0 0
  • 0 0
  • 0 0
  • 0 0
  • 0 0
  • gtgt d ccdesign(5,'fraction',1,'type','inscribed',
    'center',3)
  • d
  • -0.5000 -0.5000 -0.5000 -0.5000
    0.5000
  • -0.5000 -0.5000 -0.5000 0.5000
    -0.5000
  • -0.5000 -0.5000 0.5000 -0.5000
    -0.5000
  • -0.5000 -0.5000 0.5000 0.5000
    0.5000
  • -0.5000 0.5000 -0.5000 -0.5000
    -0.5000
  • -0.5000 0.5000 -0.5000 0.5000
    0.5000
  • -0.5000 0.5000 0.5000 -0.5000
    0.5000
  • -0.5000 0.5000 0.5000 0.5000
    -0.5000
  • 0.5000 -0.5000 -0.5000 -0.5000
    -0.5000
  • 0.5000 -0.5000 -0.5000 0.5000
    0.5000
  • 0.5000 -0.5000 0.5000 -0.5000
    0.5000
  • 0.5000 -0.5000 0.5000 0.5000
    -0.5000
  • 0.5000 0.5000 -0.5000 -0.5000
    0.5000
  • 0.5000 0.5000 -0.5000 0.5000
    -0.5000
  • 0.5000 0.5000 0.5000 -0.5000
    -0.5000
  • 0.5000 0.5000 0.5000 0.5000
    0.5000
  • -1.0000 0 0
    0 0

22
Box-Behnken Designs
  • gtgt d bbdesign(nfactors)
  • nfactors number of factors
  • d design matrix
  • gtgt d bbdesign(3)
  • d
  • -1 -1 0
  • -1 1 0
  • 1 -1 0
  • 1 1 0
  • -1 0 -1
  • -1 0 1
  • 1 0 -1
  • 1 0 1
  • 0 -1 -1
  • 0 -1 1
  • 0 1 -1
  • 0 1 1
  • 0 0 0
  • 0 0 0
Write a Comment
User Comments (0)
About PowerShow.com