Title: System on Programmable Chip
1System on Programmable Chip (SoPC) for Real-Time
Control Applications
Dario L. Sancho-Pradel
(D.Sancho-Pradel_at_lboro.ac.uk)
Electronic Electrical Engineering Loughborough
University UK
2- Background Problem Overview
- Proposed SoPC Architecture
- Implementation Methodology
- Practical Case
- Future Work
3Background Control Basics
Physical System
Mathematical Model
Simplified model (Linearisation, )
Real-Time Equations
Transfer Function
State-Space (Continuous)
- Fast Control Loop Execution
- High Sampling Rates
(Discrete-Time)
4Background Traditional Approach
Visual Environment
Design Simplicity
C/C
Other
Performance
Assembler
- DSP
- Micro-controller
- Microprocessor
External Logic
5Background Traditional Problems
1. Off-the-shelf components
General devices ? Lower performances
2. Field of expertise
Control, Hardware, Software ? How to master all?
Application Specific Hardware FPGA EDA
High-Performance, Re-configurable, Automated
Programming
6SoPC Architecture Overview
Remote Monitoring
SYSTEM TO BE CONTROLLED
Sensors IN
Op. Amp.
Ethernet
FPGA
mP
Embedded Controller
PWM Filter
Actuators OUT
In-situ
Wireless
7SoPC Architecture Description
FLASH
Analog In
EBI
RTC-SOPC
MM
SIM
mP
AHB
CSP II
Ethernet
Actions
FILTER
PORT
Control Kernel
SIM
External Interface
Plant
C
Output
Input
-
K
8SoPC Architecture Microprocessor
- Controller Programming
- Controller Commanding
- Background Coefficient Calculation
- (ADAPTATION)
- System Monitoring
- External Event Managing
FLASH
EBI
RTC-SOPC
MM
SIM
mP
AHB
CSP II
Ethernet
9SoPC Architecture CSP II
Adapting at e.g.10Hz
Sampling at e.g. 10kHz
- Very Fast Control Laws Execution
- Modified d approach
- Real Time Adaptation
- Re-programming
- AMBA (AHB) Bus Interface
- Seamless SoPC integration
- SAC (A/D) PWM (D/A) Units Integrated
- 1 Cycle MAC Instructions
10SoPC Architecture CSP II - Architecture
Error
Status
External
SAC
SAC
Interlocking
CFF-RAM (11 bits) (Buffer)
STV-RAM (27 bits) (Buffer)
Instruction Handler
Instruction Handler
CFF-RAM (11 bits)
STV-RAM (27 bits)
CL-RAM (Control Law)
CL-RAM (Control Law)
27
ADAPTATION
ADAPTATION
12
PROGRAMMING
A
B
C
REPROGRAMMING
MAC (AB)
COMMANDS
PIPELINE
MAC (C)
D
AHB DECODER
AMBA (AHB) SLAVE INTERFACE
11SoPC Architecture CSP II (ISA)
- 32-bits RISC format
- Variables by REFERENCE
- Same Size Operands
- Single Execution Cycle
- 1 unused bit ?I.S. Expansion
Instruction dependency solved
Prospective Parallel Architectures
12SoPC Architecture Communication
CSP II INTERFACE SECTION
AHB Bus
mP Master Interface
D 2..0
enProg
AHB Slave Interface
Address Decoding Data Access
Interlocking
STATUS
CFF-RAM
D 10..0
D 20..0
D 31..0
A 9..2
A 9..2
mP
HSEL_CFF
HSEL_CFF
DECODER
A 13..10
A 13..2
HSEL_CL
ahb2slave _waddr
ack
A 31..0
HSEL_IL
HSEL_STV
SYNC.
CTL
D 20..0
CL RAM
A 9..2
ack
enProg
ahb2slave_we
A 9..2
ahb2slave _raddr
STV RAM
ahb2slave _re
slave2ahb_data
13Â
Implementation Figures (Standard)
Device Family ARM-Based Excalibur Device Code
EPXA4 Logic Elements 16,640 (9) ESB
104 (lt12) ESB bits 212,992 (10) Typical
Gates 400,000
ESB Embedded System Blocks
Outputs 4 Inputs 16 Coefficients
128 State Variables 128 Instructions 256
UPGRADABLE
Â
14Implementation Results
Actual Hardware
Theoretical
Quantisation
15Methodology Simulation
REAL SYSTEM
SYSTEM
Math Model
Control Law
Control Equations
16Methodology Compiler
17Practical Case HD Head Controller
1. Physical System
2. Mathematical Model (Reasonably Simplified)
W
J
3. Transfer Function
R
IACONST
4. State-Space
V
L
i
Estator
Armature
18Practical Case HD Head Controller
4. Controller Design
q(s)
qR(s)
E(s)
V(s)
---gtPRAGMAlt---- IN 1,u
---gt Y lt----
MUL y,c1,x1 MAC y,c2,x2,y
MAC y,d,u,y
---gt X1 lt---- MAC
x1,a1,x2,x1 ---gt X2tmplt----
MAC x2tmp,a2n,x1,x2
MAC x2tmp,a2n,x2,x2tmp ---gt X2 lt----
MAC x2,b2,u,x2tmp ---gt OUTPUT
lt---- WRITE 0,1,x1,x2
---gt Y lt---- 001-0000001-0000000-0000010-0000000 0
00-0000001-0000001-0000011-0000001 000-0000001-000
0010-0000100-0000001 ---gt X1 lt---- 000-0000010-000
0011-0000011-0000010 ---gt X2tmplt---- 000-0000101-0
000100-0000010-0000011 000-0000101-0000100-0000011
-0000101 ---gt X2 lt---- 000-0000011-0000101-0000100
-0000101 ---gt OUTPUT lt---- 011-0000000-0000001-000
0010-0000011
1kHz
19Future Work Maglev Train
Transrapid International Transrapid Test Facility
in Emsland, Germany
Tokyo - Osaka Japan
Baltimore-Washington U.S.A.
- Projects Goals
- Suspension/Levitation control
- Single-Chip solution
- Real-Time performances
- Easy to programme/re-programme
20System on Programmable Chip (SoPC) for Real-Time
Control Applications
Dario L. Sancho-Pradel
(D.Sancho-Pradel_at_lboro.ac.uk)
Electronic Electrical Engineering Loughborough
University UK