Title: Sensordatafusion
1Sensordatafusion
- Egils Sviestins
- SaabTech Systems
2Fusion levels (JDL model)
Level 1 Objects
Level 2 Situations
Level 3 Intentions
Sources
Level 4 Process
3Terminologi
Objekt
Situationer
Avsikter
Sensordata- fusion
Sensor- data
Informations- fusion
Andra data
Styrning Optimering
4Modeller
- Mätningar/information räcker inte
- Modeller krävs!
- Matematiska
- exempel
- Idéer om verkligheten/mentala modeller
- Begränsat av naturlagar, ekonomiska lagar,
mänsklig förmåga etc. - Mätningar/information snävar in möjligheterna
1
2
3
5Från verkligheten...
Rån stöld e.d. som utförs under hot om våld
6Context
7Data processing Improvement or Destruction?
Raw information
Sensor
User
Meaningful information
8Synkanalen (hypotetiskt!)
9Hörselkanalen (hypotetiskt!)
10Early fusion...
... or late?
WSC
11Seeing (hypothetical)
WSC
12Artskilda sensorer
13Tidig fusion - för och emot
- Mindre risk för tvetydigheter
- Osäkerheter kan lättare beskrivas statistiskt -
Bayes teori kan användas - Mindre robust m a p systematiska fel
- Svårt hantera artskilda källor
14Inte så enkelt...
15Fusionsprincip i hjärnan?
16The Radar Data Processing Chain
Extractor
Receiver
Tracker
A12
A07
Raw video
Plots (R,az)
Tracks (,x,y,vx,vy,...)
WSC
17Steps in Tracking
18The Tracking Cycle
WSC
19Filtering techniques
- Linear regression (least squares batch
processing) (hardly used in this context) - (70s) Alpha-Beta
- (80s) Adaptive Kalman
- (90s) Interactive Multiple Model (IMM)
- (2000s ?) Non-linear filtering?
20Linear regression
x
How to handle maneuvering targets???
t
21Alpha-Beta filtering
a and b are tuning constants between 0 and 1
Prediction step
Updating step
ab0 Measurement has no effect ab1 History
has no effect
22Kalman filtering
Current state uncertainties Measurement
uncertainties New state uncertainties
Like a-b-filter, but Automatically optimizes a
and b Best weighting between history and
measurement Output includes estimated accuracy
23Probability densities
.
x
Update
Prediction
Measurement
x
24IMM States
25IMM structure
26Bayes teori
27Associering
- M målspår, N plottar hur koppla samman?
- OBS! Falska/saknade plottar, falska/saknade
målspår - Närmaste granne?
- Närmaste granne i statistiskt avstånd?
- Global optimering statistiskt avstånd(minimera
)? - Söka globalt mest sannolika koppling?Hur man än
gör kan det bli fel. Motiverar multihypotes
28Measurement-to-track association
- Clusters with M measurements and N tracks
- Form hypotheses like
- Calculate probabilities for each hypothesis, e.g.
29LPQ association Plot Track clusters
30Bayesian track initiation
Given a tentative track. Two hypotheses H0
Track is false H1 Track is genuine Cnp(H1)
Credibility at scan n Obtained measurement z.
Spurious plot density ps.
31Initiation by Credibility
- Required Fast initiation and low false track
rate - Sequential hypothesis testing
- Credibility C likelihood that a potential track
is genuine
cred
32Andra sensorer
- Bildalstrande
- TV
- FLIR (Forward Looking Infrared)
- Millimetervågsradar
- SAR (Synthetic Aperture Radar)
- Icke bildalstrande
- Störbäringsavtagare
- Signalspaning
- IRST (Infrared Search Track)
- Akustiska/Hydroakustiska sensorer
- GPS
33Decentralized Multi-Radar Tracking
34Centralized Multi-Radar Tracking
35Filling coverage gaps
Two radars Coverage gap
Red single radar track lost and reinitiated
Decentralized MRT may give confusing picture
Centralized MRT performs well
36Disadvantages of centralized multi-radar tracking
- More sensitive to bias errors
- Bias compensation required
- Difficult to distribute CPU load on several
processors - But not impossible
- Existing data links often do not supply plot
level data - Sometimes requires hybrid solutions
- Sensors sometimes include extensive processing
- Sometimes requires hybrid solutions
37Strobes only
150 km
38Crossings
39Reasons for Multi-Sensor Tracking
- Radars can be jammed
- Protective need to keep radars silent
- Radars dont always give best target detection
- May support target identification
40Target Type Identification
- Based on
- Direct observations
- ESM / IRST measurements
- Kinematics
- Each track carries a vector with probabilities of
possible target types. - Requires a library of target type characteristics
41MST scenario
42Example
Lockheed F16
MiG-29
Mirage 2000
Lockheed U2
MiG-25
3 3 3 1 1 3 3 3 3 1
3 3 3 2 2 3 3 3 3 2
3 3 3 4 5 3 3 3 4 5
3 3 3 4 5 6 3 3 3 4
3 3 3 4 5 6 7 6 6 7
43Kinematic typingOffline Create Target Type
Database
- Max altitude
- Min/Max speed as function of altitude
- Max climb rate as function of altitude
- Max distance from base
- Max linear/turn acceleration as function of
altitude
44Step 1 - Collect flight data
- Max altitude
- Min/max velocity as function of altitude
- Max climb rate
- Max distance from base
- ltMax linear/turn acceleration as function of
altitudegt - Utilise meteorological data if available
45Step 2 - Update Probability Vector
CollectedFlight Data
NewProbabilityVector p(F16),...
PreviousProbabilityVector
Bayes Rule
p(F16),...
Target TypeDatabase
46Avrundning
- Sensordatafusion - uppgifter om enskilda objekt
baserat (mest) på sensordata - Bygger oftast på matematiska modeller
ochBayesiansk hypotesprövning - Många svåra områden återstår
- Sensorer som ger knepiga data
- Svårtolkade scenarier (t ex mark och undervatten)
- Gemensam lägesbild (distribuerad fusion)
- Fusion av starkt artskilda sensorer
- Integration med infofusion