The atmosphere at mm wavelengths - PowerPoint PPT Presentation

About This Presentation
Title:

The atmosphere at mm wavelengths

Description:

introduces a phase delay, i.e. it retards the incoming wave fronts ... time dependent (fluctuating) amount of pwv along the line of sight in front of each telescope ... – PowerPoint PPT presentation

Number of Views:28
Avg rating:3.0/5.0
Slides: 24
Provided by: IRA58
Category:

less

Transcript and Presenter's Notes

Title: The atmosphere at mm wavelengths


1
The atmosphere at mm wavelengths
  • Jan Martin Winters
  • IRAM, Grenoble

2
Why bother about the atmosphere?Because the
atmosphere...
  • emits thermally and therefore adds noise
  • attenuates the incoming radiation
  • introduces a phase delay, i.e. it retards the
    incoming wave fronts
  • is turbulent, i.e. the phase errors are time
    dependent (seeing) and lead to a decorrelation
    of the visibilities measured by an
    interferometer, i.e. the measured amplitudes are
    degraded

3
Constituents
  • Species molec. weight Volume abundance
  • amu
  • N2 28
    0.78084
  • O2 32
    0.20948
  • Ar 40
    0.00934 99.966
  • CO2 44
    3.33 10-4
  • Ne 20.2 1.82
    10-5
  • He 4 5.24
    10-6
  • CH4 16 2.0
    10-6
  • Kr 83.8 1.14
    10-6
  • H2 2
    5 10-7 gt evaporated
  • O3 48 4
    10-7
  • N2O 44 2.7
    10-7
  • H2O 18 a few
    10-6 variable!

4
Simplistic Approach
  • The atmosphere is a highly complex and nonlinear
    system
  • (weather forecast)
  • For our purpose we describe it as being
  • Static d
    / dt 0 and v 0
  • 1-dimensional
    f(r,f,q) -gt f(z)
  • Plane-parallel
    Dz / R ltlt 1
  • In Local Thermodynamic
    Equilibrium (LTE)
  • at
    temperature T(z)
  • Equation of state
    ideal gas

5
Atmospheric model
  • Equation of state
  • p (r/M) RT S pi
  • Hydrostatic equilibrium
  • dp / dz -rg - pM / (RT) g gt dp / p
    -gM / (RT) dz gt
  • p p0 exp(-z/H)
  • with the pressure scale height
  • H RT/gM ( 6 ... 8.5km for T210 ... 290K)
  • Temperature structure (tropospheric)
  • dT/dz -b ( 6.5 K/km) for z lt 11 km
  • T T0 b (z-z0)

6
Standard atmosphere
Midlatitude winter
Midlatitude summer
7
Atmospheric structure Temperature
  • Greenhouse effect
  • Energy balance
  • 4 pr2sT4 pr2
    (1-A) Lsun/(4pR2) (Albedo A 0.33)
  • BB emission absorbed solar radiation
  • gt T 252 K ( -21C)
  • However, the average temperature near
    the ground is 288 K ( 15C)
  • Reason
  • H2O, CO2, CH4 , N2O absorb infrared radiation
  • gt energy is trapped in the atmosphere

8
Atmospheric transmission
Radio cm mm sub-mm
infrared optical UV
9
Atmospheric structure Stability (I)
  • Ground a) heats up faster than air during the day
  • b) cools off faster than air
    during the night
  • gt Temperature gradient near the ground
    (lt 2km) can be

    steeper or shallower than in
    the standard atmosphere
  • Temperature inversion
  • e.g. if ground cools faster than the air,
    dT/dz gt 0
  • usually stops abruptly at 1-2km altitude,
    normal gradient resumes

10
Atmospheric structure Stability (II)
  • Stability against convection A rising air bubble
    will cool adiabatically
  • Temperature structure (adiabatic)
  • dq cv dT pdV 0,
  • EOS gt pdVVdp (R/M)dT (cp-cv)dT
  • gt dT/dz -g / cp -Gad ( adiabatic
    lapse rate 9.8 K/km)
  • If b gt Gad, a rising bubble will become warmer
    than the surroundings (and less dense) gt
    unstable (upward convection, e.g. if ground heats
    up faster than air)

11
Radiative transfer (I)
optical depth dtn knds, source function Sn
en/kn
gt formal solution
s
In(s) In(0) e-tn(0,s) ? Sn(s) e-tn(s,s)
kn(s) ds
0
12
Radiative transfer (II)
Brightness temperature Motivation
2hn3 1 2n2
c2 exp(hn/kT) 1 c2
In TE In Bn(T) ______ ________________
____ kTR
hn/kTltlt1 Rayleigh-Jeans
Define a brightness temperature
13
Radiative transfer (III)
dTb(s) dtn
_____ _ Tb(s) T(s)
gt formal solution
Isothermal medium (equivalent effective
atmospheric temperature TAtm)
Tb(s) Tb(0) e-tn(0,s) TAtm (1 - e-tn(0,s))
source attenuation atmospheric emission
(additional noise,
increases system
temperature)
14
Radiative transfer (IV)
  • Plane wave, travelling in x direction
  • E(x,t) E0 exp i (kx - ?t)
  • complex wave vector k 2p/l N
  • with complex refractive index
  • N n i k
  • gt
  • Imaginary part k determines attenuation (?4pk/l)
    (absorption)
  • Real part n determines phase velocity (nc/vp)
    (refraction)
  • Relation to radiation intensity
  • I0 cE02/8p ( ltSgtT)
  • where S is the Pointing vector

15
Line profile (I)
  • Absorption coefficient
  • k0(n) nl s(n) cm-1
  • s0 F0(n)
  • (nl -gt nl (1-exp-hn0/kT), stimulated emission)
  • e.g., collision broadening profile (complex van
    Vleck Weisskopf)
  • F0(n) n / (pn0) 1/(n0-n - i Dn) 1/(n0n i
    Dn)
  • F0(n) _____
    ___________________ ___________________
  • i
    ___________________ ___________________

Dn 1/(2pt) 1/(2p) n scoll vrel p
16
Line profile (II)
Collision broadening profile (van Vleck
Weisskopf) Dn 0.1n0
17
Water vapor (I)
  • The amount of water vapor is highly variable in
    time (evaporation/condensation process)
  • gt separate description in terms of dry and
    wet component (no clouds!)
  • Partial pressures
  • dry wet
    total
  • pd rd RT/Md, pV rV RT/MV, p rT
    RT/MT
  • with
  • p pd pV, rT rd rV, MT (___ ___
    ____ ___)-1

18
Water vapor (II)
Precipitable water vapor column pwv (usually
given in mm) (pwv ) w __ ? rV dz __
rV,0 hV
hV water
vapor scale height The amount of pwv can be
estimated from the temperature and the relative
humidity RH rVg/m3 pV MV / RT 216.5
pVmbar / TK RH pV / psat 100,
psatmbar 6 ( TK / 273 )18 rw 106 g/m3,
hV 2000 m gt wmm 0.0952 RH ( TK /
273 )17 e.g. T 280K, RH 30 gt w 4.4mm
19
Water vapor (III)
H2O
368GHz
22GHz
O2
H2O
O2
60GHz
118GHz
183GHz
325GHz
380GHz
20
Water vapor (IV)
  • Phase delay excess path
  • Real part n of complex refractive index
  • kn 2p/l n 2pnn/c 2pn/vp , vpc/n
  • Extra time Dt 1/c ? (n-1) ds
  • Excess path length L cDt 10-6 ? N(s) ds
  • with refractivity N 106 (n-1)
  • Exact determination compute n throughout the
    atmosphere
  • Approximate treatment empirical Smith-Weintraub
    equation
  • N 77.6 ___ 64.8 ___ 3.776 105 ___ f(n)
  • L Ld LV 231cm 6.52 wcm

Sea level, isothermal atmosphere at 280K
21
Water vapor (V)
  • Atmosphere is turbulent
  • Water vapor is poorly mixed in dry air gt
    bubbles
  • These are blown by the wind across the
    interferometer array
  • gt time dependent (fluctuating) amount of pwv
    along the line of sight in front of each
    telescope
  • gt time variable phase variation, timescales
    seconds to hours

22
Water vapor (VI)
PhD Thesis Martina Wiedner (1998)
23
To be continued ...
  • tomorrow morning in the session about
  • Atmospheric phase correction
Write a Comment
User Comments (0)
About PowerShow.com