Title: The atmosphere at mm wavelengths
1The atmosphere at mm wavelengths
- Jan Martin Winters
- IRAM, Grenoble
2Why bother about the atmosphere?Because the
atmosphere...
- emits thermally and therefore adds noise
- attenuates the incoming radiation
- introduces a phase delay, i.e. it retards the
incoming wave fronts - is turbulent, i.e. the phase errors are time
dependent (seeing) and lead to a decorrelation
of the visibilities measured by an
interferometer, i.e. the measured amplitudes are
degraded
3Constituents
- Species molec. weight Volume abundance
- amu
- N2 28
0.78084 - O2 32
0.20948 - Ar 40
0.00934 99.966 - CO2 44
3.33 10-4 - Ne 20.2 1.82
10-5 - He 4 5.24
10-6 - CH4 16 2.0
10-6 - Kr 83.8 1.14
10-6 - H2 2
5 10-7 gt evaporated - O3 48 4
10-7 - N2O 44 2.7
10-7 - H2O 18 a few
10-6 variable!
4Simplistic Approach
- The atmosphere is a highly complex and nonlinear
system - (weather forecast)
- For our purpose we describe it as being
- Static d
/ dt 0 and v 0 - 1-dimensional
f(r,f,q) -gt f(z) - Plane-parallel
Dz / R ltlt 1 -
- In Local Thermodynamic
Equilibrium (LTE) - at
temperature T(z) -
- Equation of state
ideal gas
5Atmospheric model
- Equation of state
- p (r/M) RT S pi
- Hydrostatic equilibrium
- dp / dz -rg - pM / (RT) g gt dp / p
-gM / (RT) dz gt - p p0 exp(-z/H)
- with the pressure scale height
- H RT/gM ( 6 ... 8.5km for T210 ... 290K)
- Temperature structure (tropospheric)
- dT/dz -b ( 6.5 K/km) for z lt 11 km
- T T0 b (z-z0)
6Standard atmosphere
Midlatitude winter
Midlatitude summer
7Atmospheric structure Temperature
- Greenhouse effect
- Energy balance
- 4 pr2sT4 pr2
(1-A) Lsun/(4pR2) (Albedo A 0.33) - BB emission absorbed solar radiation
- gt T 252 K ( -21C)
- However, the average temperature near
the ground is 288 K ( 15C) - Reason
- H2O, CO2, CH4 , N2O absorb infrared radiation
- gt energy is trapped in the atmosphere
8Atmospheric transmission
Radio cm mm sub-mm
infrared optical UV
9Atmospheric structure Stability (I)
- Ground a) heats up faster than air during the day
- b) cools off faster than air
during the night - gt Temperature gradient near the ground
(lt 2km) can be
steeper or shallower than in
the standard atmosphere - Temperature inversion
- e.g. if ground cools faster than the air,
dT/dz gt 0 - usually stops abruptly at 1-2km altitude,
normal gradient resumes
10Atmospheric structure Stability (II)
- Stability against convection A rising air bubble
will cool adiabatically -
- Temperature structure (adiabatic)
- dq cv dT pdV 0,
- EOS gt pdVVdp (R/M)dT (cp-cv)dT
- gt dT/dz -g / cp -Gad ( adiabatic
lapse rate 9.8 K/km) -
- If b gt Gad, a rising bubble will become warmer
than the surroundings (and less dense) gt
unstable (upward convection, e.g. if ground heats
up faster than air)
11Radiative transfer (I)
optical depth dtn knds, source function Sn
en/kn
gt formal solution
s
In(s) In(0) e-tn(0,s) ? Sn(s) e-tn(s,s)
kn(s) ds
0
12Radiative transfer (II)
Brightness temperature Motivation
2hn3 1 2n2
c2 exp(hn/kT) 1 c2
In TE In Bn(T) ______ ________________
____ kTR
hn/kTltlt1 Rayleigh-Jeans
Define a brightness temperature
13Radiative transfer (III)
dTb(s) dtn
_____ _ Tb(s) T(s)
gt formal solution
Isothermal medium (equivalent effective
atmospheric temperature TAtm)
Tb(s) Tb(0) e-tn(0,s) TAtm (1 - e-tn(0,s))
source attenuation atmospheric emission
(additional noise,
increases system
temperature)
14Radiative transfer (IV)
- Plane wave, travelling in x direction
- E(x,t) E0 exp i (kx - ?t)
- complex wave vector k 2p/l N
- with complex refractive index
- N n i k
- gt
- Imaginary part k determines attenuation (?4pk/l)
(absorption) - Real part n determines phase velocity (nc/vp)
(refraction) -
- Relation to radiation intensity
- I0 cE02/8p ( ltSgtT)
- where S is the Pointing vector
15Line profile (I)
- Absorption coefficient
- k0(n) nl s(n) cm-1
- s0 F0(n)
- (nl -gt nl (1-exp-hn0/kT), stimulated emission)
- e.g., collision broadening profile (complex van
Vleck Weisskopf) - F0(n) n / (pn0) 1/(n0-n - i Dn) 1/(n0n i
Dn) - F0(n) _____
___________________ ___________________ - i
___________________ ___________________
Dn 1/(2pt) 1/(2p) n scoll vrel p
16Line profile (II)
Collision broadening profile (van Vleck
Weisskopf) Dn 0.1n0
17Water vapor (I)
- The amount of water vapor is highly variable in
time (evaporation/condensation process) - gt separate description in terms of dry and
wet component (no clouds!) - Partial pressures
- dry wet
total - pd rd RT/Md, pV rV RT/MV, p rT
RT/MT - with
- p pd pV, rT rd rV, MT (___ ___
____ ___)-1
18Water vapor (II)
Precipitable water vapor column pwv (usually
given in mm) (pwv ) w __ ? rV dz __
rV,0 hV
hV water
vapor scale height The amount of pwv can be
estimated from the temperature and the relative
humidity RH rVg/m3 pV MV / RT 216.5
pVmbar / TK RH pV / psat 100,
psatmbar 6 ( TK / 273 )18 rw 106 g/m3,
hV 2000 m gt wmm 0.0952 RH ( TK /
273 )17 e.g. T 280K, RH 30 gt w 4.4mm
19Water vapor (III)
H2O
368GHz
22GHz
O2
H2O
O2
60GHz
118GHz
183GHz
325GHz
380GHz
20Water vapor (IV)
- Phase delay excess path
-
- Real part n of complex refractive index
- kn 2p/l n 2pnn/c 2pn/vp , vpc/n
- Extra time Dt 1/c ? (n-1) ds
- Excess path length L cDt 10-6 ? N(s) ds
- with refractivity N 106 (n-1)
-
- Exact determination compute n throughout the
atmosphere - Approximate treatment empirical Smith-Weintraub
equation - N 77.6 ___ 64.8 ___ 3.776 105 ___ f(n)
- L Ld LV 231cm 6.52 wcm
Sea level, isothermal atmosphere at 280K
21Water vapor (V)
- Atmosphere is turbulent
- Water vapor is poorly mixed in dry air gt
bubbles - These are blown by the wind across the
interferometer array - gt time dependent (fluctuating) amount of pwv
along the line of sight in front of each
telescope - gt time variable phase variation, timescales
seconds to hours
22Water vapor (VI)
PhD Thesis Martina Wiedner (1998)
23To be continued ...
- tomorrow morning in the session about
- Atmospheric phase correction