Title: AERONET Inversions: Progress and Perspectives
1AERONET Inversions Progress and Perspectives
Oleg Dubovik (NASA / GSFC)
Alexander Sinyuk (NASA / GSFC)
Tatyana Lapyonok (NASA / GSFC) Brent
Holben (NASA / GSFC) Tom Eck
(NASA / GSFC) Alexander
Smirnov (NASA / GSFC) Anne Vermeulen
(NASA / GSFC) Teruyuki Nakajima
(CCSR, Tokyo, Japan) Takashi Nakajima
(CCSR, Tokyo, Japan) Charles Gatebe
(NASA / GSFC) Michael King
(NASA / GSFC) Francois-Marie Breon
(CEA/DSM/LSCE, France) Michael Sorokin
(NASA / GSFC) Ilya Slutsker
(NASA / GSFC) AERONET/PHOTON (Word-Wide)
2Retrieval scheme
Forward model -Spectral and angular scattering
by particles with different sizes, compositions
and shapes - Accounting for multiple scattering
in atmosphere
- (Dubovik and King, JGR, 2000)
Numerical inversion -Accounting for
noise -Solving Ill-posed problem - Setting a
priori constraints
Observations
aerosol particle sizes, refractive index,
single scattering albedo, etc.
3Multiple Scattering
Multiple Scattering
Multiple scattering effects are accounted by
solving scalar radiative transfer equation with
assuming Lambertian ground reflectance (Nakajima
Tanaka code)
Aerosol scattering
Gaseous absorption
Surface reflection
Molecular scattering
4Single Scattering
Single Scattering by Single Particle
Scattering and Absorption is modeled assuming
aerosol particle as homogeneous sphere with
spectrally dependent complex refractive index (
m(l) n(l) - i k(l)) - Mie particles
Iscat(???)
m(l) Radius
I0(?)
Itrans(?)
P(Q)- Phase Function ?0(l) -single
scattering albedo ?(l) - extinction optical
thickness ?(l)?0(l)?? absorption?optical
thickness
5AERONET model of aerosol
AERONET model of aerosol
spherical
Randomly oriented spheroids (Mishchenko et al.,
1997)
6Inversion
- Statistically optimized fitting
- (Dubovik and King, 2000)
Lagrange parameters
weighting
- Measurements
- i1 - optical thickness
- i2 - sky radiances
- their covariances
- (should depend on l and Q)
- -lognormal error distributions
a priori restrictions on norms of derivatives
of i3 -size distr. variability i4 -n spectral
variability i5 -k spectral variability
consistency Indicator
7Fitting as a retrieval strategy
8The averaged optical properties of various
aerosol types (Dubovik et al., 2002, JAS)
_
9AERONET inversion developments
- Forward model
- accounting for particle shape
- - using non-lambertian surface
- modeling polarization
- Output improvements
- detailed phase function
- degree of polarization
- flexible separation of modes
- - fluxes and forcing
- details of fitting (biases and random)
- Retrieval flexibility
- additional spectral channels
- different geometries
- Errors estimation
- for individual retrieval
- for absorption optical thickness
- for phase functions, etc.
- Inversion of combined data
- different geometries
- combining with satellite
- - combining with aircraft
- Perspectives
- assuming bi-component aerosols
- combining with polarimetric
- satellite observations
- - retrieval of shape distribution
10AERONET inversion scenarios
- Almucantar
- t(l), I(l,Q)
- 0.38, 0.44, 0.5, 0.67,
- 0.87, 1.02, 1.64, mm
Inversion Products dV/dln(ri)
n(l) k(l) BRDF errors
spheres
- Principal Plane
- t(l), I(l,Q)
- l 0.38, 0.44, 0.5, 0.67,
- 0.87, 1.02, 1.64, mm
spheroids
Polarized Principal Plane t(l), I(l,Q),P(l,Q) l
0.87mm
w0(l) P11(l), P12(l), ... fine coarse fluxes,
satellite, aircraft, etc.
11Utilizing additional spectral channels
- Almucantar
- t(l), I(l,Q)
- 0.44, 0.67,0.87,
- 1.02, 1.64, mm
Potential enhancement of information Increased
calibration efforts
Desert Dust (Dhabi, UAI)
dV/dln(ri)
n(l)
w0(l)
12Utilizing additional spectral channels
- Almucantar
- t(l), I(l,Q)
- 0.38, 0.44, 0.67,
- 0.87, 1.02, mm
Potential enhancement of information Increased
calibration efforts
GSFC aerosol
dV/dln(ri)
n(l)
w0(l)
13Fitting additional spectral channels
GSFC aerosol
Dhabi dust
0.5, 1.64 mm
1.64 mm
0.38 mm
0.02
- 0.02
???
water vapor ?
fine ?
14Utilizing principal plane
Enhanced range of scattering angles Sensitivity
to vertical structure of aerosol Challenging
cloud screening
- Principal Plane
- t(l), I(l,Q)
- l 0.44, 0.67, 0.87,
- 1.02, 1.64, mm
Desert Dust (Dhabi, UAI)
dV/dln(ri)
n(l)
w0(l)
15Utilizing principal plane
Enhanced range of scattering angles Sensitivity
to vertical structure of aerosol Challenging
cloud screening
- Principal Plane
- t(l), I(l,Q)
- l 0.44, 0.5, 0.67,
- 0.87,1.02, 1.64, mm
GSFC aerosol
dV/dln(ri)
n(l)
w0(l)
16AERONET Polarized Inversion
Forward Model
Single Scat
Multiple Scat
DEUZE JL, HERMAN M, SANTER R, JQSRT, 1989
Successive Orders of Scattering Code
t(l), I(l,Q),P(l,Q)
Numerical inversion -Accounting for uncertainty
(F11 -F12/F11 !!!) - Setting a priori
constraints
aerosol particle sizes, refractive index,
single scattering albedo
17Utilizing polarization
- Principal Plane
- t(l), I(l,Q)
- l 0.44, 0.5, 0.67,
- 0.87,1.02, 1.64, mm
- Polarization
- t(l), I(l,Q),P(l,Q)
- l 0.87mm
Enhanced range of scattering angles Sensitivity
to vertical structure of aerosol Challenging
cloud screening Calibration verification
Cape Verde aerosol
dV/dln(ri)
n(l)
w0(l)
18Fitting polarization
Principal Plane t(l), I(l,Q) l
0.87mm Polarization t(l), I(l,Q),P(l,Q) l
0.87mm
Enhanced range of scattering angles Sensitivity
to vertical structure of aerosol Challenging
cloud screening Calibration verification
Cape Verde aerosol
Radiance
Linear Polarizartion
19Fine and Coarse modes separations
Beijing aerosol
Radiance
0.45mm
Flexible separation between fine and coarse
modes (curently 0.6 mm)
20Retrieval using combinations of up-looking
Ground-based and down-looking satellite observati
ons
Retrieved
Aerosol Properties - size distribution - real
ref. ind. - imag. ref. ind (AERONET sky channels)
- Surface Parameters
- BRDF (MISR channels)
- Albedo (MODIS IR channels)
21AERONET / POLDER-2 retrieval
POLDER-2 fit
Biomass burning Mongu, Zambia, June, 2003
Size distribution
BRDF
22AERONET/ MISR/ MODIS retrieval
- AERONET Ground-based Sun-sky radiometer
- - t(l) 0.02 at
- 6 channels 0.34, 0.38, 0.44, 0.67, 0.87, 1.02,
1.65 mm - I(l,Q) 0.05 at
- 4 channels 0.38, 0.44, 0.67, 0.87, 1.02, 1.65 mm
- 3 scattering angles 70
- P(l,Q) 0.02 at 0.87
- MISR
- Reflectance at
- 4 channels 0.45, 0.55, 0.67, 0.87 mm
- 9 viewing angles 70.5o, 60o, 45.6o,
26.1o, 0o - MODIS
- Reflectance at
- 7 channels 0.47, 0.55, 0.66, 0.87,1.2, 1.6, 2.1
23Retrieval using combinations of up- and
down-looking observations
Retrieved
Aerosol above plane - size distribution - real
ref. ind. - imag. ref. ind
Aerosol below plane - size distribution - real
ref. ind. - imag. ref. ind
Surface Parameters - BRDF, albedo, etc.
24CAR - Cloud Absorption Radiometer
Univ. of Washington CV-580
Flown by CV-580 aircraft at 700 m above ground
8 spectral channels 0.34, 0.38, 0.47, 0.68,
0.87, 1.03, 1.19, 1.27 mm
Measures radiation transmitted and
reflected 0 Obs. Zenith 180 0 Obs.
Azimuth 360
Stray light problems for scattering angles
10
25Optical thickness t(l) on September 6, 2000
AATS-14 versus AERONET
26Aerosol retrieved from combinedCAR - AERONET -
AATS-14 obs.
27Comparison of model retrieved BRDFwith corrected
direct BRDF
BRDF constrains model - positive and smooth -
PP symmetrical
Gatebe et al. 2003
28Comparison of retrieved surface reflectance with
other observations
Mongu, Zambia
Lambertian approximation
Mongu, September 6, 2000
29New Inversion Options
- Almucatars (any numbers of spectral channels)
- Principal planes (any numbers of spectral
channels) - Polarized Principle Planes (0.87 mm)
- Combined Principle Planes Polarized (0.87 mm)
Regular (0.44 - 1.02mm) - Other Combined Cimel Data
- Almucantar Principle Plane (?)
- Several Almucantars Principle Planes (??)
- AERONET satellite data (MODIS, MISR, POLDER )
- AERONET aircraft (CAR) satellite
- Spherical Nonspherical model (for all
retrievals)
- Perspectives
- assuming bi-component aerosols
- combining with polarimetric satellite
observations - - retrieval of shape distribution
30Offsets
Sensitivity to instrumental offsets
Offsets were considered in - optical thickness
- sky-channel calibration - azimuth angle
pointing - assumed ground reflectance
Aerosol models considered (bi - modal
log-normal) - Water-soluble aerosol for 0.05
t(440) 1 - Desert dust for 0.5 t(440)
1 - Biomass burning for 0.5 t(440) 1
Results summary - t(440) 0.2 - dV/dlnr (),
n(l) (-), k(l) (-), w0(l) (-) - t(440) gt 0.2 -
dV/dlnr (), n(l) (), k(l) (), w0(l) () -
Angular pointing accuracy is critical for dV/dlnr
of dust
() CAN BE retrieved (-) CAN NOT BE retrieved
31Dt bias influence at Dw0
Dt bias
Sky Radiance bias
32Random ERRORS in AERONET retrievals
ASSUMPTIONS - measurements have Normal Noise
- optical thickness s 0.01
- sky-radiances s 5
- CONCLUSIONS
- the retrievals stable
- important tendencies
- outlined
-
33Rigorous ERRORS estimates General case large
number of unknowns and redundant measurements
U - matrix of partial derivatives in the vicinity
of solution
Above is valid - in linear approximation -
for Normal Noise - no a priori constraints
34ERRORS estimates with a priori constraints
ISSUES - in linear approximation - for Normal
Noise - strongly dependent on a priori
constraints - very challenging in most
interesting cases
35ERROR Factors
Important Factors - Aerosol Loading -
Scattering Angle Range - Number of Angles
(homogeneity) - Aerosol Type etc.
36Examples of error estimates
high loading
low loading
37ABSORPTION of SMOKE
flaming combustion Rio Branco, Brazil
smoldering combustion Quebec fires, July 2002