Using the Westerbork radio observatory - PowerPoint PPT Presentation

About This Presentation
Title:

Using the Westerbork radio observatory

Description:

FORTE. Phys.Rev.D69(04)13008. 9/21/09. Int. ARENA workshop, 17-19 May, ... Rice,GLUE,FORTE. Calc. limits GLUE. Theoretical predictions. Active galactic nuclei ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 17
Provided by: bac62
Category:

less

Transcript and Presenter's Notes

Title: Using the Westerbork radio observatory


1
Using the Westerbork radio observatory to detect
UHE cosmic particles interacting on the Moon
J. Bacelar (KVI) O. Scholten (KVI) G. de Bruyn
(ASTRON) H. Falcke (ASTRON)
2
UHE Cosmic-rays
3
Experiments performed
Satellite FORTE Phys.Rev.D69(04)13008
Balloon ANITA Astro-phys./411007(2004) Ground RI
CE AstroP.Phys. 20(03)195
Moon GLUE Phys.Rev.Lett. 93(04)41101
4
Askaryan effect Coherent Cherenkov emission
Experiment at SLAC with beams of 28.5 GeV
electrons And 1010 e-/bunch effective shower
energies 0.06-1.10 1019 eV
D. Saltzberg et al PRL 86 (2001) 2802
1 Jy 10-20 W/m2/MHz
5
Askaryan effect Coherent Cherenkov emission
Experiment at SLAC with beams of 28.5 GeV
electrons And 1010 e-/bunch effective shower
energies 0.06-1.10 1019 eV
D. Saltzberg et al PRL 86 (2001) 2802
1 Jy 10-20 W/m2/MHz
6
  • Particle hits Moon (radius1700 km area 6p 106
    km2)
  • Interacts protons within meters, V
  • Askaryan effect -gt Coherent Cherenkov emission
  • Shower development -gt
    including LPM effect
  • Transmission through Moon material ?r 15m / ?
    GHz 7m (at 2.2 GHz)
  • Transmissivity across Moon surface vacuum
    boundary

60 km _at_ 1021 eV 6 km _at_ 1024 eV
Vacuum
Moon n1.5-1.8
Spread emitted power density in a gaussian of
width ??c?/l Hadronic component ??c 2.5 (3/?)
3.50 (at 2.2 GHz) EM component ??c 2.5
(3/?)(4.1014 / E)1/3 0.0250
?c 560
?c
7
  • Particle hits Moon (radius1700 km area 6p 106
    km2)
  • Interacts protons within meters, V
  • Askaryan effect -gt Coherent Cherenkov emission
  • Shower development -gt
    including LPM effect
  • Transmission through Moon material ?r 15m / ?
    GHz 150 m (at 0.1 GHz)
  • Transmissivity across Moon surface vacuum
    boundary

60 km _at_ 1021 eV 6 km _at_ 1024 eV
Spread emitted power density in a gaussian of
width ??c?/l Hadronic component ??c 2.5 (3/?)
750 (at 0.1 GHz) EM component ??c 2.5
(3/?)(4.1014 / E)1/3 0.50
?c
8
ne Showers in ice above 1020 eV
EM Shower (80)
ne
e
  • No photonuclear interactions
  • Hadronic shower Long EM shower
  • EM 36 cm/sqrt(E/1015 eV)
  • Shower length 60 m (E/1019 eV)1/3
  • (90 containment. Alvarez-Muniz Zas))

Hadronic Shower (20)
EM propagator Length LEM
EM --gt hadronic Shower (80)
  • Photonuclear interactions
  • Hadronic shower
  • Delayed (by LEM) hadronic shower
  • H 83 cm
  • Shower length 30LH 25 m

ne
m
e
Hadronic Shower (20)
J. Alvarez-Muniz, E. Zas, P.L. B434
(98)396 Phys.Rev.D62(2000)63001.
9
Shower Length
  • 3 simple models
  • EM (w/ LPM)
  • Length E1/3
  • (Alvarez-Muniz Zas)
  • 1 km at 1022 eV
  • Hadronic
  • Length ln(E)
  • Hybrid
  • Initially EM, but
  • g --gt hadrons
  • 400 m at 1022 eV

Purely EM Purely Hadronic Dotted - hybrid
ne Energy (eV)
NOTE ??c 1/(l? )
10
Results of calculations for cosmic rays
11
Results of calculations for neutrinos
12
Proposed Experiment
Use Westerbork radio observatory
  • Advantages
  • 117-175 MHz band
  • 25 m diameter dishes
  • 5 degree field of view
  • 12-14 coincident receivers
  • 100 hour observation time
  • 40 M samples/sec (PuMa2)
  • Polarization information

13
Proposed Experiment
Use Westerbork radio observatory
14
(No Transcript)
15
Calc. limits GLUE
Published limits Rice,GLUE,FORTE
16
Calc. limits GLUE
Published limits Rice,GLUE,FORTE
Theoretical predictions Active galactic
nuclei Astro.Phys.3(96)295 GZK induced
flux Phys.Rev.D64(04)93010 Topological
defects AstroPhys. J. 479(97)547
17
Calc. limits GLUE
Published limits Rice,GLUE,FORTE
Predicted limits 45 days ANITA
Theoretical predictions Active galactic
nuclei Astro.Phys.3(96)295 GZK induced
flux Phys.Rev.D64(04)93010 Topological
defects AstroPhys. J. 479(97)547
Calc. limits 100 hours Westerbork
18
Energy response
19
Conclusions
  • Westerbork observatory
  • 14 radio antennas
  • 117-175 MHz band
  • PuMa 2 data acquisition mode
  • Low background noise
  • Large field of view
  • Polarization information
  • Within 100 hours observation competitive
    sensitivity to both cosmic rays and neutrino
    fluxes
  • Energy threshold 1021 eV
  • Polarization determines plane of incidence of
    original particle

Future Experiment with LOFAR
Write a Comment
User Comments (0)
About PowerShow.com