Title: Using the Westerbork radio observatory
1Using the Westerbork radio observatory to detect
UHE cosmic particles interacting on the Moon
J. Bacelar (KVI) O. Scholten (KVI) G. de Bruyn
(ASTRON) H. Falcke (ASTRON)
2UHE Cosmic-rays
3Experiments performed
Satellite FORTE Phys.Rev.D69(04)13008
Balloon ANITA Astro-phys./411007(2004) Ground RI
CE AstroP.Phys. 20(03)195
Moon GLUE Phys.Rev.Lett. 93(04)41101
4Askaryan effect Coherent Cherenkov emission
Experiment at SLAC with beams of 28.5 GeV
electrons And 1010 e-/bunch effective shower
energies 0.06-1.10 1019 eV
D. Saltzberg et al PRL 86 (2001) 2802
1 Jy 10-20 W/m2/MHz
5Askaryan effect Coherent Cherenkov emission
Experiment at SLAC with beams of 28.5 GeV
electrons And 1010 e-/bunch effective shower
energies 0.06-1.10 1019 eV
D. Saltzberg et al PRL 86 (2001) 2802
1 Jy 10-20 W/m2/MHz
6- Particle hits Moon (radius1700 km area 6p 106
km2) - Interacts protons within meters, V
- Askaryan effect -gt Coherent Cherenkov emission
- Shower development -gt
including LPM effect - Transmission through Moon material ?r 15m / ?
GHz 7m (at 2.2 GHz) - Transmissivity across Moon surface vacuum
boundary
60 km _at_ 1021 eV 6 km _at_ 1024 eV
Vacuum
Moon n1.5-1.8
Spread emitted power density in a gaussian of
width ??c?/l Hadronic component ??c 2.5 (3/?)
3.50 (at 2.2 GHz) EM component ??c 2.5
(3/?)(4.1014 / E)1/3 0.0250
?c 560
?c
7- Particle hits Moon (radius1700 km area 6p 106
km2) - Interacts protons within meters, V
- Askaryan effect -gt Coherent Cherenkov emission
- Shower development -gt
including LPM effect - Transmission through Moon material ?r 15m / ?
GHz 150 m (at 0.1 GHz) - Transmissivity across Moon surface vacuum
boundary
60 km _at_ 1021 eV 6 km _at_ 1024 eV
Spread emitted power density in a gaussian of
width ??c?/l Hadronic component ??c 2.5 (3/?)
750 (at 0.1 GHz) EM component ??c 2.5
(3/?)(4.1014 / E)1/3 0.50
?c
8ne Showers in ice above 1020 eV
EM Shower (80)
ne
e
- No photonuclear interactions
- Hadronic shower Long EM shower
- EM 36 cm/sqrt(E/1015 eV)
- Shower length 60 m (E/1019 eV)1/3
- (90 containment. Alvarez-Muniz Zas))
Hadronic Shower (20)
EM propagator Length LEM
EM --gt hadronic Shower (80)
- Photonuclear interactions
- Hadronic shower
- Delayed (by LEM) hadronic shower
- H 83 cm
- Shower length 30LH 25 m
ne
m
e
Hadronic Shower (20)
J. Alvarez-Muniz, E. Zas, P.L. B434
(98)396 Phys.Rev.D62(2000)63001.
9Shower Length
- 3 simple models
- EM (w/ LPM)
- Length E1/3
- (Alvarez-Muniz Zas)
- 1 km at 1022 eV
- Hadronic
- Length ln(E)
- Hybrid
- Initially EM, but
- g --gt hadrons
- 400 m at 1022 eV
Purely EM Purely Hadronic Dotted - hybrid
ne Energy (eV)
NOTE ??c 1/(l? )
10Results of calculations for cosmic rays
11Results of calculations for neutrinos
12Proposed Experiment
Use Westerbork radio observatory
- Advantages
- 117-175 MHz band
- 25 m diameter dishes
- 5 degree field of view
- 12-14 coincident receivers
- 100 hour observation time
- 40 M samples/sec (PuMa2)
- Polarization information
13Proposed Experiment
Use Westerbork radio observatory
14(No Transcript)
15Calc. limits GLUE
Published limits Rice,GLUE,FORTE
16Calc. limits GLUE
Published limits Rice,GLUE,FORTE
Theoretical predictions Active galactic
nuclei Astro.Phys.3(96)295 GZK induced
flux Phys.Rev.D64(04)93010 Topological
defects AstroPhys. J. 479(97)547
17Calc. limits GLUE
Published limits Rice,GLUE,FORTE
Predicted limits 45 days ANITA
Theoretical predictions Active galactic
nuclei Astro.Phys.3(96)295 GZK induced
flux Phys.Rev.D64(04)93010 Topological
defects AstroPhys. J. 479(97)547
Calc. limits 100 hours Westerbork
18Energy response
19Conclusions
- Westerbork observatory
- 14 radio antennas
- 117-175 MHz band
- PuMa 2 data acquisition mode
- Low background noise
- Large field of view
- Polarization information
- Within 100 hours observation competitive
sensitivity to both cosmic rays and neutrino
fluxes - Energy threshold 1021 eV
- Polarization determines plane of incidence of
original particle
Future Experiment with LOFAR