Title: Olaf Scholten
1Radio detection of UHE Neutrinos off the Moon
Olaf Scholten KVI, Groningen For the NuMoon
collaboration
2Principle of the measurement
Cosmic ray
Detection Westerbork antennas
107 km2
100MHz Radio waves
3Radio emission Mechanisms
- In air Geo-synchotron radiation
- Coherent emission in Atmosphere
- LOPES
- In matter Askaryan effect
- Coherent Cerenkov emission in
- ice, salt, rock, .
- FORTE, RICE, SALSA, GLUE,
4Askaryan effect Coherent Cherenkov emission
- Leading cloud of electrons, v ? c
- Typical size of order 10cm
- Coherent Cerenkov for ? ? 2-5 GHz
- cos ?c 1/n , ?c56o for 8 shower
length - Length of shower, L ? few m
- Important for angular spreading
5Importance of angular spread
High frequency - Internal reflection
??c?/l 3.50 (at 2.2 GHz)
- Lower frequencies
- Considerable emission
- Larger angular acceptance
??c 750 (at 0.1 GHz)
6Spreading around Cherenkov-cone
Old
n1.8
New
GHz
MC calculations
Sine profile L1.7 m , E1020
O.S. etal., Astropart.Phys. 2006
7Influence of frequency
Case Shower _at_ 2.50 with surface
Calculations for Ecr4 1021 eV
Simulations for Moon Minimal signal 3000Jy
0.1 GHz 85 of area
2.2 GHz 0.8 of area
Intensity v.s. cos ?, f
8Cosmic rays, Position on Moon
Calculations for Ecr4 1021 eV
- With decreasing ?
- - increasing area
- - increasing probability
- ? over surface Moon
- D ? ?-3
Partial Detection probability
Normalized distance from center
9Detection Limits, Cosmic rays
Minimum Flux for detecting 1 count/100h Detection
threshold 500Jy
- Decreasing ?
- Increasing threshold
- like ?-1
- Increase sensitivity
- like ?-3
10Neutrino Showers above 1020 eV
Landau Pomeranchuck Migdal effect J.
Alvarez-Muniz, E. Zas, P.L. B434 (98)396,
Phys.Rev.D62(2000)63001
Shorter showers give larger angular spread
11Detection Limits, Neutrinos
Present results compared with that of GLUE
experiment (_at_2.2GHz)
Waxman-Bahcall
12NuMoon Experiment _at_ WSRT
Use Westerbork radio observatory
- Advantages
- 117-175 MHz band
- 12--25 m diameter dishes
- 5 degree field of view
- 40 M samples/sec (PuMa2)
- Polarization information
Measurements have started !!
13NuMoon Experiment _at_ WSRT
Use Westerbork radio observatory
Simultaneously 2 strips on the Moon _at_ 4
frequency bands
14NuMoon Experiment _at_ LOFAR
- Total collecting area 0.5 km2
- Cover whole moon,
- Sensitivity 25 times better than WSRT.
- Bands
- 30-80 MHz (600 Jy)
- 115-240 MHz (20 Jy)
Start 2008
15Cosmic Rays
Sensitive to flux beyond GKZ limit
Detection threshold taken at Fdet 25
Fnoise ??20 MHz , 4 bands ?140 MHz WSRT Fdet
15,000 Jy LOFAR Fdet 500 Jy
16Neutrinos
WSRT, 500 hours 2 counts
LOFAR, 30 days 40 counts
Theoretical predictions Waxman-Bahcall
limit GZK induced flux Phys.Rev.D64(04)93010 Top
ological defects AstroPhys. J. 479(97)547
17Status experiment
Observation time granted at WSRT - 100h per half
year, total 500h - 60 h Observation already
Data are being analyzed, Part of LOFAR Key
Science Program 2008 ?
18Observations
raw data
time amplitude
Frequency spectrum
After Removing RFI
20 kHz, low resolution
1.5 kHz, high resolution
19Future SKA,LORD
1 year observation, LFB 100-300 MHz MFB 300-500
MHz
20Conclusions
- NuMoon _at_ WSRT
- 117-175 MHz band
- Large field of view
- Polarization information
Future NuMoon _at_ LOFAR
Within 100 hours competitive
Sensitivity to cosmic rays and
neutrinos
NuMoon
NuMoon collaboration KVI Jose Bacelar, Ad van
den Berg, O.S. Astron Robert Braun, Ger de
Bruyn, Heino Falcke, Ben Stappers,
Richard Strom (also UvA,RUG,RU)
21SKA-Hadrons
22LORD efficiency for neutrinos
23Angular spread
24Additional
Radio-absorbtion length ?/?GHz default ?9 m
Stopping power, default X0 22.1 g/cm2
25sensitivity to top-soil
26- Particle hits Moon (radius1700 km area 6p 106
km2) - protons interacts at surface
- neutrinos inside
- Transmission through Moon material ?r 9m / ?
GHz 4m (at 2.2 GHz) - Transmissivity across Moon surface vacuum
boundary
60 km _at_ 1021 eV 6 km _at_ 1024 eV
Angular spread emitted power ??c?/l Hadronic
component ??c 2.5 (3/?) 750 (at 0.1 GHz)
Case Shower _at_ 2.50 with surface