Title: Section 1.5
1Section 1.5 Properties of Functions Library of
Functions
2A function f is increasing on an open interval I
if, for any choice of x1 and x2 in I, with x1 lt
x2, we have f(x1) lt f(x2).
A function f is decreasing on an open interval I
if, for any choice of x1 and x2 in I, with x1 lt
x2, we have f(x1) gt f(x2).
A function f is constant on an open interval I
if, for any choice of x in I, the values of f(x)
are equal.
3Increasing (0,2)
0 lt x lt 2
y
Decreasing (2,7)
2 lt x lt 7
4
(2, 3)
Constant (7,10)
7 lt x lt 10
(4, 0)
0
(1, 0)
x
(10, -3)
(0, -3)
(7, -3)
-4
4A function f has a local maximum at c if there is
an interval I containing c so that, for all x in
I, f(x) lt f(c). We call f(c) a local maximum of
f.
A function f has a local minimum at c if there is
an interval I containing c so that, for all x in
I, f(x) gt f(c). We call f(c) a local minimum of
f.
5(No Transcript)
6(No Transcript)
7Symmetry examples
g(-z) -(-z)22 -z22
8(No Transcript)
9A linear function is a function of the form
f(x)mxb
The graph of a linear function is a line with a
slope m and y-intercept b.
(0,b)
10A constant function is a function of the form
f(x)b
y
b
x
11Identity function is a function of a form
f(x)x
(1,1)
(0,0)
12The square function
13Cube Function
(1,1)
(-1,-1)
14Square Root Function
15Reciprocal Function
(1,1)
(-1,-1)
16(No Transcript)
17Absolute Value Function
(1,1)
(-1,1)
18(No Transcript)
19(No Transcript)
20(1, 3)
21(No Transcript)
22Section 1.6 Graphing Techniques Transformations
23(No Transcript)
24(No Transcript)
25Graph the function
26(2, 4)
(0, 0)
27(2, 4)
(-1, 4)
(-3, 0)
(0, 0)
28(-1, 6)
(-1, 4)
(2, 4)
(-3, 2)
(0, 0)
(-3, 0)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32(4, 2)
(0, 0)
33(4, 2)
(8, 2)
(0, 0)
34(8, 6)
(4, 2)
(8, 2)
(0, 0)
35(No Transcript)
36(No Transcript)
37(No Transcript)
38(9, 3)
(0, 0)
39(-9, 3)
(9, 3)
(0, 0)
40(-9, 3)
(9, 3)
(0, 0)
(-9, -3)