Fermionic condensation - PowerPoint PPT Presentation

1 / 16
About This Presentation
Title:

Fermionic condensation

Description:

Thermodynamics of the Bose gas follows from the thermodynamics of the Fermi gas. ... I showed that the equivalent Bose system condenses; ... – PowerPoint PPT presentation

Number of Views:520
Avg rating:3.0/5.0
Slides: 17
Provided by: dragosvic
Category:

less

Transcript and Presenter's Notes

Title: Fermionic condensation


1
Fermionic condensation
Dragos-Victor Anghel University of Oslo
  • Related publications
  • D. V. Anghel, Exclusion Statistics Transformation
    and Ensemble Equivalence Tested From a Different
    Perspective, submitted to J. Math. Phys.,
    cond-mat/0310377.
  • D. V. Anghel, Condensation in ideal Fermi gases,
    J. Phys. A Math. Gen. 36, L577-L583 (2003)
    cond-mat/0310248.
  • D. V. Anghel, Gases in two dimensions universal
    thermodynamics and its consequences, J. Phys. A
    Math. Gen. 35, 7255-7267 (2002),
    cond-mat/0105089.

2
Outline
  • Universal thermodynamics in 2D systems
  • microscopic reason for the universality
  • EST in 2D
  • extension of EST to systems of general spectra
  • condensation
  • thermodynamic equivalence
  • effects of condensation.

3
Bosons and fermions
4
Bosons and fermions
Robert M. May, Phys. Rev. 135, A1515 (1964)
5
Intermediate statistics (FES)
F. D. M. Haldane, Phys. Rev. Lett. 67, 937 (1991)
6
Reason for the universality
7
Realization of FES
  • M.V.N. Murthy and R. Shankar, Phys. Rev. Lett.
    73, 3331 (1994)
  • T.H. Hansson, J.M. Leinaas, and S. Viefers, Nucl.
    Phys. B 470, 291 (1996)
  • S.B. Isakov and S. Viefers, Int. J. Mod. Phys. A
    12, 1895 (1997)
  • T.H. Hansson, J.M. Leinaas, and S. Viefers, Phys.
    Rev. Lett. 86, 2930 (2001)
  • M.V.N. Murthy and R. Shankar, Phys. Rev. B 60,
    6517 (1999)
  • Z.N.C. Ha, Phys. Rev. Lett. 73, 1574 (1994)
  • D.V. Anghel, J. Phys. A Math. Gen. 35, (2002)
  • D.V. Anghel, cond-mat/0310377.

8
What happens if there is an interval with all the
energy levels occupied?
I calculate the partition function
its derivative
I get first order phase transition!
9
Could we have a condensate in the ideal system?
  • sgt0 always a condensate
  • s0 the gas will condense
  • slt0 the gas will condense ? first order phase
    transition

10
A proper way to account for the fermionic
condensation is by the Exclusion Statistics
Transformation
11
General EST
12
(No Transcript)
13
(No Transcript)
14
What do we know about bosons and fermions?
15
  • But, if the fermionic condensation happens before
    the first order phase transition

The order of the phase transition increases
16
Conclusions
  • I presented the basic idea of Exclusion
    Statistics Transformation
  • I showed that the equivalent Bose system
    condenses
  • the BEC is related to the fermionic condensation
  • the idea of EST questions the ensemble
    equivalence in Fermi systems
  • I gave examples of the effects of fermionic
    condensation.
Write a Comment
User Comments (0)
About PowerShow.com