Controlled Rectifiers Line Commutated AC to DC converters - PowerPoint PPT Presentation

1 / 172
About This Presentation
Title:

Controlled Rectifiers Line Commutated AC to DC converters

Description:

The diode rectifiers are referred to as uncontrolled rectifiers. ... Diode conduction angle = 1800 or radians. ... dc load current in a diode rectifier circuit. ... – PowerPoint PPT presentation

Number of Views:1920
Avg rating:3.0/5.0
Slides: 173
Provided by: VTU1
Category:

less

Transcript and Presenter's Notes

Title: Controlled Rectifiers Line Commutated AC to DC converters


1
Controlled Rectifiers(Line Commutated AC to DC
converters)
1
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
2
  • Type of input Fixed voltage, fixed frequency ac
    power supply.
  • Type of output Variable dc output voltage
  • Type of commutation Natural / AC line commutation

2
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
3
Different types of Line Commutated Converters
  • AC to DC Converters (Phase controlled
    rectifiers)
  • AC to AC converters (AC voltage controllers)
  • AC to AC converters (Cyclo converters) at low
    output frequency.

3
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
4
Differences Between Diode Rectifiers Phase
Controlled Rectifiers
4
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
5
  • The diode rectifiers are referred to as
    uncontrolled rectifiers .
  • The diode rectifiers give a fixed dc output
    voltage .
  • Each diode conducts for one half cycle.
  • Diode conduction angle 1800 or ? radians.
  • We can not control the dc output voltage or the
    average dc load current in a diode rectifier
    circuit.

5
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
6
6
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
7
Applications ofPhase Controlled Rectifiers
  • DC motor control in steel mills, paper and
    textile mills employing dc motor drives.
  • AC fed traction system using dc traction motor.
  • Electro-chemical and electro-metallurgical
    processes.
  • Magnet power supplies.
  • Portable hand tool drives.

7
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
8
Classification ofPhase Controlled Rectifiers
  • Single Phase Controlled Rectifiers.
  • Three Phase Controlled Rectifiers.

8
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
9
Different types of Single Phase Controlled
Rectifiers.
  • Half wave controlled rectifiers.
  • Full wave controlled rectifiers.
  • Using a center tapped transformer.
  • Full wave bridge circuit.
  • Semi converter.
  • Full converter.

9
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
10
Different Types of Three Phase Controlled
Rectifiers
  • Half wave controlled rectifiers.
  • Full wave controlled rectifiers.
  • Semi converter (half controlled bridge
    converter).
  • Full converter (fully controlled bridge
    converter).

10
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
11
Principle of Phase Controlled Rectifier Operation
11
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
12
Single Phase Half-Wave Thyristor Converter with a
Resistive Load
12
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
13
  • Supply Voltage
  • Output Voltage
  • Output (load)
  • Current

13
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
14

  • Supply Voltage
  • Thyristor Voltage

14
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
15
Equations
15
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
16
16
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
17
To Derive an Expression for the Average (DC)
Output Voltage Across The Load
17
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
18
18
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
19
19
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
20
20
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
21
21
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
22
Control Characteristic of Single Phase Half
Wave Phase Controlled Rectifier with Resistive
Load
22
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
23
23
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
24
24
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
25
Control Characteristic
25
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
26
26
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
27
To Derive An Expression for the RMS Value of
Output Voltage of a Single Phase Half Wave
Controlled Rectifier With Resistive Load
27
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
28
28
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
29
29
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
30
30
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
31
Performance Parameters Of Phase Controlled
Rectifiers
31
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
32
32
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
33
33
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
34
34
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
35
35
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
36
36
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
37
37
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
38
38
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
39
39
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
40
40
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
41
41
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
42
42
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
43
Single Phase Half Wave Controlled Rectifier
With An RL Load
43
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
44
44
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
45
Input Supply Voltage (Vs) Thyristor (Output)
Current Waveforms
45
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
46
46
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
47
Output (Load) Voltage Waveform
47
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
48
48
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
49
49
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
50
50
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
51
51
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
52
52
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
53
53
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
54
To Derive An Expression For Average (DC) Load
Voltage of a Single Half Wave Controlled
Rectifier withRL Load
54
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
55
55
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
56
56
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
57
Effect of Load Inductance on the Output
57
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
58
Average DC Load Current
58
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
59
Single Phase Half Wave Controlled Rectifier With
RL Load Free Wheeling Diode
59
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
60
60
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
61
61
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
62
62
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
63
63
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
64
For Large Load Inductancethe load current does
not reach zero, we obtain continuous load
current
64
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
65
Single Phase Half Wave Controlled Rectifier With
A General Load
65
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
66
66
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
67
67
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
68
68
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
69
Equations
69
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
70
Expression for the Load Current
70
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
71
71
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
72
72
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
73
73
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
74
To Derive An Expression For The Average Or DC
Load Voltage
74
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
75
75
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
76
76
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
77
77
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
78
Single Phase Full Wave Controlled Rectifier
Using A Center Tapped Transformer
78
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
79
79
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
80
Discontinuous Load Current Operation without
FWDfor
80
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
81
81
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
82
82
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
83
83
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
84
84
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
85
85
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
86
86
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
87
87
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
88
To Derive An Expression For The DC Output Voltage
Of A Single Phase Full Wave Controlled Rectifier
With RL Load (Without FWD)
88
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
89
89
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
90
90
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
91
91
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
92
92
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
93
Discontinuous Load Current Operation with FWD
93
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
94
94
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
95
95
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
96
To Derive an Expression For The DC Output
Voltage For A Single Phase Full Wave Controlled
Rectifier With RL Load FWD
96
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
97
97
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
98
  • The load current is discontinuous for low values
    of load inductance and for large values of
    trigger angles.
  • For large values of load inductance the load
    current flows continuously without falling to
    zero.
  • Generally the load current is continuous for
    large load inductance and for low trigger angles.

98
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
99
Continuous Load Current Operation (Without FWD)
99
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
100
100
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
101
To Derive An Expression For Average / DC Output
VoltageOf Single Phase Full Wave Controlled
Rectifier For Continuous Current Operation
without FWD
101
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
102
102
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
103
103
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
104
104
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
105
  • By plotting VO(dc) versus ?,
  • we obtain the control characteristic of a
    single phase full wave controlled rectifier with
    RL load for continuous load current operation
    without FWD

105
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
106
106
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
107
107
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
108
108
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
109
109
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
110
Drawbacks Of Full Wave Controlled Rectifier
With Centre Tapped Transformer
  • We require a centre tapped transformer which is
    quite heavier and bulky.
  • Cost of the transformer is higher for the
    required dc output voltage output power.
  • Hence full wave bridge converters are preferred.

110
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
111
Single Phase Full Wave Bridge Controlled
Rectifier
  • 2 types of FW Bridge Controlled Rectifiers are
  • Half Controlled Bridge Converter
  • (Semi-Converter)
  • Fully Controlled Bridge Converter
  • (Full Converter)
  • The bridge full wave controlled rectifier does
    not require a centre tapped transformer

111
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
112
Single Phase Full Wave Half Controlled Bridge
Converter (Single Phase Semi Converter)
112
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
113
113
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
114
Trigger Pattern of Thyristors
114
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
115
Waveforms of single phase semi-converter with
general load FWDfor ? gt 900
115
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
116
  • Single Quadrant Operation

116
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
117
117
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
118
118
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
119
119
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
120
Load Voltage Load Current Waveform of Single
Phase Semi Converter for? lt 900 Continuous
load current operation
120
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
121
121
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
122
To Derive an Expression For The DC Output
Voltage of A Single Phase Semi-Converter With
R,L, E Load FWDFor Continuous, Ripple Free
Load Current Operation
122
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
123
123
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
124
124
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
125
RMS O/P Voltage VO(RMS)
125
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
126
Single Phase Full Wave Full Converter (Fully
Controlled Bridge Converter)With R,L, E Load
126
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
127
127
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
128
Waveforms of Single Phase Full Converter
Assuming Continuous (Constant Load Current)
Ripple Free Load Current
128
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
129
129
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
130
130
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
131
131
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
132
To Derive An Expression For The Average DC
Output Voltage of a Single Phase Full Converter
assuming Continuous Constant Load Current
132
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
133
133
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
134
134
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
135
135
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
136
136
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
137
  • By plotting VO(dc) versus ?,
  • we obtain the control characteristic of a
    single phase full wave fully controlled bridge
    converter
  • (single phase full converter)
  • for constant continuous
  • load current operation.

137
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
138
138
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
139
139
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
140
140
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
141
  • During the period from ?t ? to ? the input
    voltage vS and the input current iS are both
    positive and the power flows from the supply to
    the load.
  • The converter is said to be operated in the
    rectification mode
  • Controlled Rectifier Operation
  • for 0 lt ? lt 900

141
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
142
  • During the period from ?t ? to (??), the
    input voltage vS is negative and the input
    current iS is positive and the output power
    becomes negative and there will be reverse power
    flow from the load circuit to the supply.
  • The converter is said to be operated in the
    inversion mode.
  • Line Commutated Inverter Operation
  • for 900 lt ? lt 1800

142
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
143
Two Quadrant Operation of a Single Phase Full
Converter
0lt? lt 900 Controlled Rectifier Operation
900lt? lt1800 Line Commutated Inverter Operation
143
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
144
To Derive An Expression For The RMS Value Of
The Output Voltage
144
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
145
145
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
146
146
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
147
147
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
148
148
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
149
Thyristor Current Waveforms
149
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
150
150
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
151
151
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
152
Single Phase Dual Converter
152
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
153
153
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
154
154
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
155
155
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
156
156
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
157
157
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
158
158
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
159
To Obtain an Expression for the Instantaneous
Circulating Current
159
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
160
  • vO1 Instantaneous o/p voltage of converter 1.
  • vO2 Instantaneous o/p voltage of converter 2.
  • The circulating current ir can be determined by
    integrating the instantaneous voltage difference
    (which is the voltage drop across the circulating
    current reactor Lr), starting from ?t (2? -
    ?1).
  • As the two average output voltages during the
    interval ?t (??1) to (2? - ?1) are equal and
    opposite their contribution to the instantaneous
    circulating current ir is zero.

160
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
161
161
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
162
162
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
163
163
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
164
164
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
165
The Dual Converter Can Be Operated In Two
Different Modes Of Operation
  • Non-circulating current (circulating current
    free) mode of operation.
  • Circulating current mode of operation.

165
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
166
Non-Circulating Current Mode of Operation
  • In this mode only one converter is operated at a
    time.
  • When converter 1 is ON, 0 lt ?1 lt 900
  • Vdc is positive and Idc is positive.
  • When converter 2 is ON, 0 lt ?2 lt 900
  • Vdc is negative and Idc is negative.

166
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
167
Circulating Current Mode Of Operation
  • In this mode, both the converters are switched ON
    and operated at the same time.
  • The trigger angles ?1 and ?2 are adjusted such
    that (?1 ?2) 1800 ?2 (1800 - ?1).

167
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
168
  • When 0 lt?1 lt900, converter 1 operates as a
    controlled rectifier and converter 2 operates as
    an inverter with 900 lt?2lt1800.
  • In this case Vdc and Idc, both are positive.
  • When 900 lt?1 lt1800, converter 1 operates as an
    Inverter and converter 2 operated as a controlled
    rectifier by adjusting its trigger angle ?2 such
    that 0 lt?2lt900.
  • In this case Vdc and Idc, both are negative.

168
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
169
Four Quadrant Operation
  • Conv. 2 Inverting
  • ?2 gt 900

Conv. 1 Rectifying ?1 lt 900
Conv. 2 Rectifying ?2 lt 900
Conv. 1 Inverting ?1 gt 900
169
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
170
Advantages of Circulating Current Mode Of
Operation
  • The circulating current maintains continuous
    conduction of both the converters over the
    complete control range, independent of the load.
  • One converter always operates as a rectifier and
    the other converter operates as an inverter, the
    power flow in either direction at any time is
    possible.

170
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
171
  • As both the converters are in continuous
    conduction we obtain faster dynamic response.
    i.e., the time response for changing from one
    quadrant operation to another is faster.

171
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
172
Disadvantages of Circulating Current Mode Of
Operation
  • There is always a circulating current flowing
    between the converters.
  • When the load current falls to zero, there will
    be a circulating current flowing between the
    converters so we need to connect circulating
    current reactors in order to limit the peak
    circulating current to safe level.
  • The converter thyristors should be rated to carry
    a peak current much greater than the peak load
    current.

172
Prof. M. Madhusudhan Rao, EC Dept., MSRIT
Write a Comment
User Comments (0)
About PowerShow.com