Title: Physiology of Desulfovibrio
1Physiology of Desulfovibrio from
Experimentation and Sequence
Judy D. Wall Huei-Che Yen Grant Zane
Biochemistry Department University of
Missouri-Columbia
DOE Genomes to Life Virtual Institute for
Microbial Stress and Survival
2Presentation Outline
- Energy generating mechanism deduced from
sequencing - Observations from mutants supporting the
inferences - Growth parameters (practical info)
- Pictures (for fun)
- Cautionary tale
3Modes of Energy Generation in Desulfovibrio
- Fermentation
- Respiration
- Metabolite cycling (formerly hydrogen
cycling)
4Lactate metabolism by Desulfovibrio
Periplasm
CH3COHCOO-
Lactate
Substrate level phosphorylation
2e-
CH3COCOO-
Pyruvate
Electron dump
2e-
ATP
CH3COO- CO2
Acetate
or
CH3COO- HCOO-
SO4
S
5Lactate metabolism by Desulfovibrio
Periplasm
CH3COHCOO-
ATP
Lactate
Respiration
2e-
e-
CH3COCOO-
H
Proton Gradient
Electron transport chain
Pyruvate
2e-
e-
ATP
CH3COO- CO2
Acetate
or
CH3COO- HCOO-
SO4
S
6Lactate metabolism by Desulfovibrio
Periplasm
CH3COHCOO-
ATP
Lactate
H2 cycling
2e-
CH3COCOO-
Electron transport chain
H
Proton Gradient
Pyruvate
2H
2e-
H2
H2
ATP
CH3COO- CO2
2e-
Acetate
or
c-type cytochromes
CH3COO- HCOO-
Electron transport chain
SO4
S
7Lactate metabolism by Desulfovibrio
Periplasm
CH3COHCOO-
ATP
Lactate
Formate cycling
2e-
CH3COCOO-
Electron transport chain
H
Proton Gradient
Pyruvate
2H
2e-
HCOOH
ATP
H2
CH3COO- HCOO-
2e-
CO2
Acetate
Formate
c-type cytochromes
HCOOH
Electron transport chain
SO4
S
8Requirements for Metabolite Cycling
- Periplasmic and cytoplasmic hydrogenases
- Pyruvate formate lyase and periplasmic formate
dehydrogenases - Transmembrane electron carrier complexes
connected to periplasmic enzymes
9Periplasmic hydrogenases of D. vulgaris
H2
Periplasm
2 e-
Fe-only Hase
NiFe Hase-1
NiFeSe Hase
Cytoplasm
NiFe Hase-2
H
ATP
H
ADP Pi
10Cytoplasmic hydrogenases of D. vulgaris
Periplasm
Ech-type
H
Cytoplasm
Sulfate reduction!
ATP
H
2
H
2 H
2 e
-
CO2
HCOOH
ADP Pi
b
Lactate
Pyruvate AcetylCoA
HCOO
-
H
a
a
d
c
AcetylCoA
CO
2e
-
2H
2
AcetylCoA
CO
11Periplasmic Formate Dehydrogenases of D. vulgaris
Periplasm
Ech-type
H
Cytoplasm
Sulfate reduction!
ATP
H
2
H
2 H
2 e
-
CO2
HCOOH
ADP Pi
b
Lactate
Pyruvate AcetylCoA
HCOO
-
H
a
a
d
c
AcetylCoA
CO
2e
-
2H
2
AcetylCoA
CO
12Periplasmic cytochrome c3 matrix of D. vulgaris
H2
Periplasm
2 e-
Fe-only Hase
Cyt c3
NiFe Hase-1
NiFeSe Hase
Cytoplasm
NiFe Hase-2
H
ATP
H
ADP Pi
13Periplasmic cytochrome matrix of D. vulgaris
H2
Periplasm
2 e-
Fe-only Hase
Cyt c3
NiFe Hase-1
Hmc Hexadecaheme c
Triheme c
Nonaheme c
NiFeSe Hase
NiFe-2 c3
Acidic c3
Cytoplasm
NiFe Hase-2
H
ATP
H
ADP Pi
14Periplasmic cytochrome matrix of D. vulgaris
H2S
H2
Periplasm
2 e-
Fe-only Hase
Cyt c3
NiFe Hase-1
Hmc Hexadecaheme c
Triheme c
Nonaheme c
NiFeSe Hase
Trans Membrane Complex
NiFe-2 c3
Trans Membrane Complex
Acidic c3
Cytoplasm
NiFe Hase-2
e-
e-
H
e-
e-
ATP
H
ADP Pi
15 Hydrogen and
Formate
Cycling
Proton gradient!
Periplasm
2 H
2 e
-
c
-
type
cytochromes
Periplasmic
Hydrogenases
Cytoplasmic
membrane
NADPH-linked
Cytoplasmic
16Initial model of
Desulfovibrio
reduction of uranium
Uranium (VI)
ox
H
Cytochrome
c
Hydrogenase
2
3
Uranium (IV)
red
Lovley et al., 1993
17Initial model of
Desulfovibrio
reduction of uranium
Uranium (VI)
ox
H
Cytochrome
c
Hydrogenase
2
3
Uranium (IV)
red
Lovley et al., 1993
18(No Transcript)
19Periplasmic cytochrome matrix of D. vulgaris
H2
Periplasm
2 e-
Fe-only Hase
NiFe Hase-1
Hmc Hexadecaheme c
Triheme c
Nonaheme c
NiFeSe Hase
Trans Membrane Complex
NiFe-2 c3
Trans Membrane Complex
Acidic c3
Cytoplasm
NiFe Hase-2
e-
e-
H
e-
e-
ATP
H
ADP Pi
20LDH
LDH
4 e
-
2
H2
21Growth of WT and CycA
22Su
Lactate/sulfate growth of D. desulfuricans G20
23Sulfide Production of WT and CycA
24Hydrogen Accumulation from WT and CycA
25Â Â Specific hydrogenase activities of D.
vulgaris wild type or Fe-only hydrogenase
mutanta Â
a Specific activities are relative units/mg
proteinml Data taken from Pohorelic et al., J.
Bacteriol. 184679-686, 2002.
26Â Reduction of U(VI) by Desulfovibrio vulgaris
Hildenborough wild type and Fe-only hydrogenase
mutant A Â
ARates are µmol U(VI) reduced hour mg whole
cell protein B Results are averages of three
replicates  CResults are averages of two
experiments with three replicates each
27Practical Considerations for Manipulating
Desulfovibrio vulgaris
- Reductant selection
- Antibiotic resistance selections
- Growth of colonies
28(No Transcript)
29(No Transcript)
30(No Transcript)
31(No Transcript)
32D. vulgaris CFU on Defined Medium
KmR exconjugate selection with G418
33- Desulfovibrio desulfuricans G20
- Complete LS medium 1 mM Uranyl Acetate
- Early stationary phase (overnight)
- Late stationary phase (four days)
34D. desulfuricans G20 Early Stationary LS Medium
35D. desulfuricans G20 Early Stationary LS 1mM
U Medium
36D. desulfuricans G20 Four Day Stationary LS
Medium
37D. desulfuricans G20 Four Day Stationary LS
1mM U Medium
38Growth of D. desulfuricans G20 with U(VI) to test
effect on cytochrome c3 expression
1.0
0.8
0.6
mM U(VI)
0.4
0.2
0.0
0
2
4
6
8
10
12
14
16
18
20
Time (h)
LS G20 Lactate
LSU G20 Lactate
39Single-copy fusion of cycA promoter and ATG start
codon to ß-Galactosidase gene
Â
Plasmid sequences
cycA promoter
cycA promoter
cycA
KmR
ATG
DNA Introduced
40ß-Galactosidase Activities of Fusion Constructs
Sp. Act. µmol/minmg protein
41Implication of translational fusions with cycA
- Strong evidence that cytochrome c3 is necessary
for hydrogen supported uranium reduction - No measurable effect of exposure of the cell to
subinhibitory concentration of uranium on cycA
expression - Therefore, transcript and proteome analysis will
not reveal all critical genes for bioremediation
of toxic metals