Generalized Entropies - PowerPoint PPT Presentation

1 / 30
About This Presentation
Title:

Generalized Entropies

Description:

Roger Colbeck (ETH Zurich) Nilanjana Datta (U Cambridge) Oscar Dahlsten (ETH Zurich) ... S( A | B ) = lim 1 limn 1 H ( A1 ... An | B1 ... Bn) / n. Remark ... – PowerPoint PPT presentation

Number of Views:84
Avg rating:3.0/5.0
Slides: 31
Provided by: renato5
Category:

less

Transcript and Presenter's Notes

Title: Generalized Entropies


1
Generalized Entropies
  • Renato Renner
  • Institute for Theoretical Physics
  • ETH Zurich, Switzerland

2
  • Collaborators
  • Roger Colbeck (ETH Zurich)
  • Nilanjana Datta (U Cambridge)
  • Oscar Dahlsten (ETH Zurich)
  • Patrick Hayden (McGill U, Montreal)
  • Robert König (Caltech)
  • Christian Schaffner (CWI, Amsterdam)
  • Valerio Scarani (NUS, Singapore)
  • Marco Tomamichel (ETH Zurich)
  • Ligong Wang (ETH Zurich)
  • Andreas Winter (U Bristol)
  • Stefan Wolf (ETH Zurich)
  • Jürg Wullschleger (U Bristol)

3
  • Why is Shannon / von Neumann entropy so widely
    used in information theory?
  • operational interpretation
  • quantitative characterization of
    information-processing tasks
  • easy to handle
  • simple mathematical definition / intuitive
    entropy calculus

4
  • Operational interpretations of Shannon entropy
    (classical scenarios)
  • data compression rate for a source PX
  • rate S(X)
  • transmission rate of a channel PYX
  • rate maxPX S(X) - S(XY)
  • secret-key rate for a correlated source PXYZ
  • rate S(XZ) - S(XY)
  • many more

5
  • Operational interpretations of von Neumann
    entropy (quantum scenarios)
  • data compression rate for a source ½A
  • rate S(A)
  • state merging rate for a bipartite state ½AB
  • rate - S(AB)
  • randomness extraction rate for a cq-state ½XE
  • rate S(XE)
  • secret-key rate for a cqq-state ½XBE
  • rate S(XE) - S(XB)

6
  • Why is von Neumann entropy so widely used in
    information theory?
  • operational meaning ?
  • quantitative characterization of
    information-processing tasks
  • easy to handle
  • simple mathematical definition / intuitive
    entropy calculus

7
  • More useful facts about von Neumann entropy
  • simple definition
  • S(½) - tr(½ log ½)
  • S(A) S(½A)
  • S(A B) S(A B) - S(B)
  • entropy calculus
  • Chain rule
  • S(A B C) S(A C) S(B A C)
  • Strong subadditivity
  • S(A B) S(A B C)

8
  • Why is von Neumann entropy so widely used in
    information theory?
  • operational meaning ?
  • quantitative characterization of
    information-processing tasks
  • easy to handle ?
  • simple mathematical definition / intuitive
    entropy calculus

9
  • Limitations of the von Neumann entropy
  • Claim Operational interpretations are only valid
    under certain assumptions.
  • Typical assumptions (e.g., for source coding)
  • i.i.d. source emits n identical and
    independently distributed pieces of data
  • asymptotics n is large (n ? 1)
  • Formally PX1Xn (PX)n for n ? 1

10
  • Can these assumptions be justified in realistic
    settings?
  • i.i.d. assumption
  • approximation justified by de Finettis theorem
  • (permutation symmetry implies i.i.d. structure on
    almost all subsystems)
  • problematic in certain cryptographic scenarios
  • (e.g., in the bounded storage model)
  • asymptotics
  • realistic settings are always finite
  • (small systems might be of particular interest
    for practice)
  • but might be OK if convergence is fast enough
  • (convergence often unknown, problematic in
    cryptography)

11
Is the i.i.d. assumption really needed? Example
PX
Fig. k4
  • Randomness extraction
  • Hextr(X) 1 bit (depends on maximum prob.)
  • Data compression
  • Hcompr(X) k bits (depends on alphabet size)
  • Shannon entropy
  • S(X) 1 k/2

(provides the right answer if PX1Xn (PX)n for
n ? 1)
12
  • Features of von Neumann entropy
  • operational interpretations
  • hold asymptotically under the i.i.d. assumption
  • but generally invalid ?
  • easy to handle
  • simple definition ?
  • entropy calculus ?
  • (Obvious) question
  • Is there a ? ? ? -entropy measure?
  • Answer
  • Yes Hmin

13
  • Generalized entropies
  • Definition Generalized relative entropy for
    positive operators ½ and ¾.
  • Dmin(½ ¾) min 2R ½ 2¾
  • Notation
  • ½ 2¾ means that the operator 2¾ - ½ is
    positive
  • Remarks
  • for two density operators ½ and ¾ Dmin(½ ¾)
    0 with equality iff ½ ¾
  • Dmin is also defined for non-normalized operators

14
  • Classical case
  • Reminder Dmin(½ ¾) min ½ 2¾
  • Let ½ and ¾ be classical states, i.e.,
  • ½ ?x P(x) xihx
  • ¾ ?x Q(x) xihx
  • Then
  • Dmin(P Q) min P(x) 2Q(x), 8 x
  • min P(x) / Q(x) 2, 8 x
  • log maxx P(x) / Q(x)

15
  • Classical case
  • Let ½ and ¾ be classical states, i.e.,
  • ½ ?x P(x) xihx
  • ¾ ?x Q(x) xihx
  • Generalized relative entropy
  • Dmin(P Q) maxx log P(x) / Q(x)
  • Comparison the standard relative entropy equals
  • S(P Q) ?x P(x) log P(x) / Q(x)

16
  • Min-entropy
  • Definition (Conditional) min-entropy of ½AB
  • Hmin(A B) - min Dmin(½AB idA ¾B)
  • where the minimum ranges over all states ¾B
  • Reminder Dmin(½ ¾) min ½ 2¾
  • Remarks
  • von Neumann entropy S(A B) - min¾ S(½AB
    idA ¾B)
  • mutual informationI (A B) min ¾A ¾B S(½AB
    ¾A ¾B)
  • hence, the min-mutual information may be defined
    byImin(A B) min¾A ¾B Dmin(½AB ¾A ¾B)

17
  • Classical case
  • For a classical probability distribution PXY
  • Hmin(XY) - log minQ maxx,y PXY(x,y) / QY(y)
  • Optimization over Q QY gives
  • Hmin(XY) - log ?y PY maxx PXY(x,y)
  • Remarks
  • r.h.s. corresponds to -log of the average
    probability of correctly guessing X given Y.
  • this interpretation can be extended to the fully
    quantum domain König, Schaffner, RR, 2008.
  • Hmin(XY) equiv. to entropy used in Dodis, Smith

18
  • Min-entropy without conditioning
  • Hmin(X) - log maxx PX(x)

19
  • Smoothing

Definition Smooth entropy of PX H²(X) maxX
Hmin(X) maximum taken over all PX with PX -
PX ²
20
  • Smoothing
  • Definition Smooth relative entropy of ½ and ¾
  • D²(½ ¾) min½ Dmin(½ ¾)
  • minimum taken over all ½ such that ½ - ½
    ².
  • Definition Smooth min-entropy of ½AB
  • H²(A B) - min¾B D²(½AB idA ¾B)

21
  • Von Neumann entropy as a special case
  • Consider an i.i.d. state ½A1 ... An B1 ... Bn
    ½A Bn.
  • Lemma
  • S( A B ) lim² ? 1 limn ? 1 H²( A1 ... An
    B1 ... Bn) / n
  • Remark
  • The lemma can be extended to spectral entropy
    rates (see Han, Verdu for classical
    distributions and Hayashi, Nagaoka, Ogawa,
    Bowen, Datta for quantum states).

22
  • Definition of a dual quantity
  • For ½ABC pure, the von Neumann entropy satisfies
  • S(A B) S(A B) - S(B) S(C) - S(A C) -
    S(A C)
  • Definition Smooth max-entropy of ½AB
  • Hmax(A B) - Hmin(A C) for ½ABC pure.
  • Observation
  • Hmax(A) H1/2(A)
  • Hence, Hmax(A) is a measure for the rank of ½A.

23
  • Operational interpretations of Hmin
  • extractable randomness
  • Hmin(XE) uniform (relative to E) random bits can
    be extracted from a random variable X König, RR
  • for classical E, this result is known as
    left-over hashing ILL
  • state merging
  • - Hmin(AB) bits of classical communication (from
    A to B) needed to merge A with B Winter, RR
  • data compression
  • Hmax(XB) bits are needed to store X such that
    it can be recovered with the help of B König
  • key agreement
  • (at least) Hmin(XE) - Hmax(XB) secret key bits
    can be obtained from source of correlated
    randomness

24
  • Features of Hmin
  • operational meaning ?
  • easy to handle ?

25
  • Min-entropy calculus
  • Chain rules
  • Hmin(A B C) ' Hmin(A B C) Hmin(B C)
  • Hmin(A B C) / Hmin(A B C) Hmax(B C)
  • (cf. talk by Robert König)
  • Strong subadditivity
  • Hmin(A B C) Hmin(A B)
  • ... usual entropy calculus ...

26
  • Example Proof of strong subadditivity
  • Lemma Hmin(A B C) Hmin(A B)
  • Proof By definition, we need to show that
  • Dmin(½ABC idA ¾BC) Dmin(½AB idA ¾B)
  • But this inequality holds because
  • 2 idA ¾BC - ½ABC 0
  • implies
  • 2 idA ¾B - ½AB 0
  • Note the lemma implies subadditivity for S

27
  • Features of Hmin
  • operational meaning ?
  • easy to handle ?
  • (often easier than von Neumann entropy)

28
  • Summary
  • Hmin generalizes von Neumann entropy
  • Main features
  • general operational interpretation
  • i.i.d. assumption not needed
  • no asymptotics
  • easy to handle
  • simple definition
  • simpler proofs (e.g., strong subadditivity)

29
  • Applications
  • quantum key distribution
  • min-entropy plays crucial role in general
    security proofs
  • cryptography in the bounded storage model
  • see talks by Christian Schaffner and by Robert
    König
  • ...
  • Open questions
  • Additivity conjecture
  • Hmax corresponds to H1/2, for which the
    additivity conjecture still might hold
  • New entropy measures based on Hmin?

30
Thanks for your attention
Write a Comment
User Comments (0)
About PowerShow.com