Title: Observation functional An exact generalization of DFT
1 2Observation functional An exact generalization
of DFT
Philippe CHOMAZ - GANIL
- States, observables, observations
- Variational principles
- Generalized mean-Field
- Hartree-Fock
- Hierarchies and fluctuations
- Exact generalized density functional
- Exact generalized Kohn-Sham Eq.
1
3 A) States, Observables and Observations
- States
- Observables
- Observation
Many-body wave function Hilbert or Fock space
31
4 A) States, Observables and Observations
- States
- Observables
- Observation
Many-body wave function Hilbert or Fock space
Density matrix Liouville space
Scalar product in matrix space
31
5 B) Variational principles
Schrödinger equation
Extremum of the action I
31
6 B) Variational principles
Zero Temperature minimum energy E
Finite T minimum free energy
Entropy
Liouville equation
Schrödinger equation
Balian and Vénéroni double principle
Extremum of the action I
Observables backward from t1 Density forward from
t0
31
7 C) Generalized mean-field
- Coherent states
- Generalized density
- Extremum action
Group transformation
Lie Algebra
Group parameters
Mean-field ltgt Ehrenfest
31
8 C) Generalized mean-field
- Coherent states
- Generalized density
- Extremum action
Trial observables
Group transformation
Lie Algebra
Group parameters
Mean-field ltgt Ehrenfest
31
9 D) Hartree Fock
- Lie algebra
- Observation
- Trial states
- Hamiltonian
- Independent particles
- Mean Field
One-body observables
One-body density
Independent particle state
Thouless theorem (Slaters)
31
10 E) Hierarchies and fluctuations
- Exact dynamics
- Hierarchy
- Projections ltAgt
- Minimum entropy
- Correlation
- MF Langevin
- Mean-Field
Close the Lie Algebra including A an H
Coupled equations
31
11 F) Exact generalized Density functional
- Exact State
- Exact Observations
- Exact E functional
- Min in a subspace
- Constrained energy
-
- ltgt external field
Or
Generalized density
31
12 G) Exact Generalized Kohn-Sham Eq.
- Exact E functional
- For a set of observations
- Exact ground state E
- gt exact densities ?
- Variation
- Equivalent to mean-field Eq.
- with Lie algebra including Al , Al , Am
Generalized density
Exact E and ? in an external field U?zlAl
31
13 G) Exact Generalized Kohn-Sham Eq.
- Remarks
- Exact for E
- and all observations ltAl gt ?l ?included in E?
- Easy to go from a set of Al to a reduced set Al
- gt E?min?cst E?
31
14 H) Density functional theory LDA
- The only information needed is the energy
- gt functionals of r
- Local density approximation
- Energy density functional
- Local densities
- matter , kinetic , current
- Mean field
35
15 H) LDA Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
- Mean-field q(n,p)
-
36
16 H) LDA Skyrme case
- Standard case few densities
- Matter isoscalar isovector
- kinetic isoscalar isovector
- Spin isoscalar isovector
- Energy functional
- Mean-field q(n,p)
-
36
17