Observation functional An exact generalization of DFT - PowerPoint PPT Presentation

About This Presentation
Title:

Observation functional An exact generalization of DFT

Description:

Balian and V n roni double principle. Liouville equation. Observables backward from t1 ... Exact E and in an external field U= zlAl DFT Philippe CHOMAZ, 2006 : ... – PowerPoint PPT presentation

Number of Views:34
Avg rating:3.0/5.0
Slides: 18
Provided by: chom4
Category:

less

Transcript and Presenter's Notes

Title: Observation functional An exact generalization of DFT


1

2
Observation functional An exact generalization
of DFT
Philippe CHOMAZ - GANIL
  • States, observables, observations
  • Variational principles
  • Generalized mean-Field
  • Hartree-Fock
  • Hierarchies and fluctuations
  • Exact generalized density functional
  • Exact generalized Kohn-Sham Eq.

1
3

A) States, Observables and Observations
  • States
  • Observables
  • Observation

Many-body wave function Hilbert or Fock space
31
4

A) States, Observables and Observations
  • States
  • Observables
  • Observation

Many-body wave function Hilbert or Fock space
Density matrix Liouville space
Scalar product in matrix space
31
5

B) Variational principles
  • Static
  • Dynamics

Schrödinger equation
Extremum of the action I
31
6

B) Variational principles
  • Static
  • Dynamics

Zero Temperature minimum energy E
Finite T minimum free energy
Entropy
Liouville equation
Schrödinger equation
Balian and Vénéroni double principle
Extremum of the action I
Observables backward from t1 Density forward from
t0
31
7

C) Generalized mean-field
  • Coherent states
  • Generalized density
  • Extremum action

Group transformation
Lie Algebra
Group parameters
Mean-field ltgt Ehrenfest
31
8

C) Generalized mean-field
  • Coherent states
  • Generalized density
  • Extremum action

Trial observables
Group transformation
Lie Algebra
Group parameters
Mean-field ltgt Ehrenfest
31
9

D) Hartree Fock
  • Lie algebra
  • Observation
  • Trial states
  • Hamiltonian
  • Independent particles
  • Mean Field

One-body observables
One-body density
Independent particle state
Thouless theorem (Slaters)
31
10

E) Hierarchies and fluctuations
  • Exact dynamics
  • Hierarchy
  • Projections ltAgt
  • Minimum entropy
  • Correlation
  • MF Langevin
  • Mean-Field

Close the Lie Algebra including A an H
Coupled equations
31
11

F) Exact generalized Density functional
  • Exact State
  • Exact Observations
  • Exact E functional
  • Min in a subspace
  • Constrained energy
  • ltgt external field

Or
Generalized density
31
12

G) Exact Generalized Kohn-Sham Eq.
  • Exact E functional
  • For a set of observations
  • Exact ground state E
  • gt exact densities ?
  • Variation
  • Equivalent to mean-field Eq.
  • with Lie algebra including Al , Al , Am

Generalized density
Exact E and ? in an external field U?zlAl
31
13

G) Exact Generalized Kohn-Sham Eq.
  • Remarks
  • Exact for E
  • and all observations ltAl gt ?l ?included in E?
  • Easy to go from a set of Al to a reduced set Al
  • gt E?min?cst E?

31
14

H) Density functional theory LDA
  • The only information needed is the energy
  • gt functionals of r
  • Local density approximation
  • Energy density functional
  • Local densities
  • matter , kinetic , current
  • Mean field


35
15

H) LDA Skyrme case
  • Standard case few densities
  • Matter isoscalar isovector
  • kinetic isoscalar isovector
  • Spin isoscalar isovector
  • Energy functional
  • Mean-field q(n,p)

36
16

H) LDA Skyrme case
  • Standard case few densities
  • Matter isoscalar isovector
  • kinetic isoscalar isovector
  • Spin isoscalar isovector
  • Energy functional
  • Mean-field q(n,p)

36
17
Write a Comment
User Comments (0)
About PowerShow.com