Title: KetoneCatalyzed Asymmetric Epoxidation Reactions
1Ketone-Catalyzed Asymmetric Epoxidation Reactions
Rawal Group Meeting (Literature)
April 4, 2005
Ray Bishop
2Application of Asymmetric Epoxidation in Natural
Product Syntheses
MacDonald, F. et al Org. Lett 2000, 2, 2917.
Yang, D. et al J.Org. Chem. 2000, 65, 2208-2217.
Danishefsky, S. et al J. Org.Chem. 2001, 66,
4369-4378.
1
3 Conditions for Converting Ketones into
Dioxiranes
H2O2 may also employed as a primary oxidant
2
4Inductive Effects on Dioxirane Reactivity
Yang, D. et al J.Org. Chem. 2000, 65, 2208-2217.
3
5First Generation Chiral Ketone Catalyst Design
olefins investigated
Curcis Chiral Ketones ees were less that 20
Curci, R. et al Chem. Commun 1984, 156-156.
4
6First Generation C2 Chiral Ketone Catalyst Design
trans-stilbene was the alkene substrate
Yang, D. et al J.Org. Chem. 2000, 65, 2208-2217.
5
7Stereoelectronic Effect on C2 Symmetric Catalyst
Activity
Yang, D. et al J.Org. Chem. 2000, 65, 2208-2217.
6
8Stereoelectronic Effect on C2 Symmetric Catalyst
Activity
Behar, V. et al Tetrahedron Lett. 2002, 43,
1943-1946.
7
9Stereoelectronic Effect on C2 Symmetric Catalyst
Activity
Tomioka, K. et al Tetrahedron Lett. 2002, 43,
631-633.
8
10Stereoelectronic Effect on C2 Symmetric Catalyst
Activity
ND not determined
Denmark, K. et al J. Org. Chem. 2002, 67,
3479-3486.
9
11Chiral Ketones Derived from Sugars
Mechanistic Hypothesis
10
12Epoxidation of Trisubstituted and
trans-Substituted Alkenes
ees determined and compared to conversion
Shi, Y et al J. Am. Chem. Soc. 2002, 43, 631-633.
11
13Use of H2O2 as a Primary Oxidant
Mechanistic Hypothesis
Shi, Y et al Tetrahedron 2001, 57, 5213-5218.
12
14Evaluation of Asymmetric Epoxidation with H2O2 as
a Primary Oxidant
ees determined and compared to conversion
Shi, Y et al Tetrahedron 2001, 57, 5213-5218.
13
15 Mechanistic Hypotheses for Epoxidation
Stereoselectivity
Shi, Y et al Tetrahedron 2001, 57, 5213-5218.
Singleton D. et al J. Am. Chem.Soc 2001,127, ASAP.
14
16Inductive Effect on the Reactivity of the Chiral
Ketone Catalyst
Shi, Y et al Tetrahedron 2001, 57, 5213-5218.
15
17Inductive Effect on the Reactivity of the Chiral
Ketone Catalyst
results obtained with catalyst 3
Shi, Y et al J. Am. Chem. Soc. 2002, 124,
8792-8793.
16
18Design of a Catalyst which is More Suitable for
cis Olefins
rationale for incompatibility with cis alkenes
and terminal alkenes
Shi, Y et al J. Org. Chem. 2002, 67, 2435-2446.
17
19Synthesis of Modified Catalyst
Shi, Y et al J. Org. Chem. 2003, 68, 4963-4965.
18
20Typical Enantiomeric Excess Values Obtained from
the Modified Catalyst
Shi, Y et al J. Am. Chem. Soc. 2002, 67,
2435-2446.
19
21Kinetic Resoluion of With Asymmetric Epoxidation
Shi, Y et al J. Am. Chem. Soc. 2005, ASAP.
20
22Rationale for Kinetic Resolution of epoxides
Shi, Y et al J. Am. Chem. Soc. 2005, ASAP.
21
23Chiral Ketones Derived from D-Glucose
Shing et al Tetrahedron 2002, 58, 7545-7552.
22
24Evaluation of a Chiral Ketone Derived from Glucose
Shing et al Tetrahedron 2002, 58, 7545-7552.
23
25Evaluation of a Chiral Ketone Derived from Glucose
Shing et al Tetrahedron 2002, 58, 7545-7552.
24
26Chiral Ketones Derived From L-Arabinose
Shing et al Tetrahedron 2003, 59, 2159-2168.
25
27Evaluation of a Chiral Ketone Derived From
L-Arabinose
The Effect of pH on Catalyst Activity
Shing et al Tetrahedron 2003, 59, 2159-2168.
26
28Chiral Ketones Derived from D-(-)-Quinic Acid
Shi, Y. et al 1997, 62, 8622-8623.
27
29Chiral Ketones Derived from D-(-)-Quinic Acid
28
Shi, Y. et al 1997, 62, 8622-8623.
30Chiral Ketones Derived from D-(-)-Quinic Acid
Shing et al Tetrahedron 2003, 59, 2159-2168.
29
31Evaluation of Chiral Ketones Derived from
D-(-)-Quinic Acid
Shing et al Tetrahedron 2003, 59, 2159-2168.
30
32Asymmetric Epoxidation with Chiral Cyclohexanones
Roberts, S. M. J. Synth. Org. Chem. Jpn. 2002,60,
342-349.
31