Title: OnLine Locomotion Synthesis for Virtual Humans
1On-Line Locomotion Synthesis for Virtual Humans
Ph.D. thesis defense
- Pascal Glardon, Ph.D. candidate
- EPFL VRLab
2Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
31. Introduction
- Why virtual human animation?
- Movies and video games
- Locomotion and jump
41. Introduction
- Why virtual human animation?
- Movies and video games
- Locomotion and jump
- How to animate?
- Key-frame
- Motion capture
51. Introduction
- General objectives
- Versatile (high-level parameters)
- Proactive
- Motion realism
- On-line
- Genericity
61. Introduction
71. Introduction
81. Introduction
91. Introduction
10Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
112. Related work
- Hand-driven method keyframe
- Model-driven method kinematics, physics
- Data-driven method motion capture
122. Related work
Park02
Rose98
13Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
143. Motion Modeling
153. Motion Modeling
- Data acquisition and processing
- Optical motion capture
- Locomotion (treadmill) / Jump
- Parameter variation
- Personification
- Type of locomotion
- Speed / jump length
- Split in cycles (motion unit)
- Joint angle space (26 joints, 40 DOFs)
Data
163. Motion Modeling
- PCA algorithm
- Each dimension most variance
Data
PCA
2 PC
1 PC
173. Motion Modeling
- PCA algorithm
- Each dimension most variance
- Dimension reduction (real-time)
Data
PCA
2 PC
1 PC
183. Motion Modeling
- PCA algorithm
- Each dimension most variance
- Dimension reduction (real-time)
- PCA on motion data
- Motion matrix M
- Column normalized motion unit ?i
Data
PCA
193. Motion Modeling
- PCA algorithm
- Each dimension most variance
- Dimension reduction (real-time)
- PCA on motion data
- Motion matrix M
- Analysis to draw laws for motion modeling
Data
PCA
203. Motion Modeling
- Hierarchical PCA
- Separate high-level parametersfor extrapolation
Data
PCA
Rose98Park02
Our method
213. Motion Modeling
- Hierarchical PCA
- Separate high-level parametersfor extrapolation
- Efficient motion generation
Data
PCA
223. Motion Modeling
- Hierarchical PCA
- Separate high-level parametersfor extrapolation
- Efficient motion generation
- Analysis in smaller dimensions
Data
PCA
233. Motion Modeling
All Data
Main PCA
243. Motion Modeling
253. Motion Modeling
All Data
Main PCA
subject1
subject2
263. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
273. Motion Modeling
283. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
walk
run
293. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
walk
run
Sub-PCA level 2
303. Motion Modeling
313. Motion Modeling
323. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
walk
run
Sub-PCA level 2
speed
333. Motion Modeling
343. Motion Modeling
353. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
walk
run
Sub-PCA level 2
speed
speed
363. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
walk
run
Sub-PCA level 2
Speed
speed
speed
373. Motion Modeling
All Data
Main PCA
subject1
subject2
Sub-PCA level 1
Locomotionweight
walk
run
Sub-PCA level 2
Speed
speed
speed
383. Motion Modeling
All Data
Main PCA
Personificationweight
subject1
subject2
Sub-PCA level 1
Locomotionweight
walk
run
Sub-PCA level 2
Speed
speed
speed
393. Motion Modeling
- Un-normalization
- Space leg length
Data
PCA
Generation
403. Motion Modeling
- Un-normalization
- Space leg length
- Time original duration
Data
PCA
Generation
413. Motion Modeling
- Un-normalization
- Space leg length
- Time original duration
- Frequency function
Data
PCA
Generation
423. Motion Modeling
- Un-normalization
- Space leg length
- Time original duration
- Frequency function
- Phase
Data
PCA
Generation
433. Motion Modeling
RHS
RHS
event
phase
443. Motion Modeling
RHS
RHS
event
phase
453. Motion Modeling
- Un-normalization
- Space leg length
- Time original duration
- Frequency function
- Phase
Data
PCA
Generation
463. Motion Modeling
473. Motion Modeling
- Results
- Real-time
- Entire motion
483. Motion Modeling
- Results
- Real-time
- Entire motion
- Limitations
- Personification parameter
- Class of movements
49Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
504. Motion Correction
514. Motion Correction
- Problem
- Foot sliding (or skating)
- Treadmill
- Interpolation
524. Motion Correction
- Problem
- Foot sliding (or skating)
- Treadmill
- Interpolation
- Foot position
534. Motion Correction
- Problem
- Foot sliding (or skating)
- Treadmill
- Interpolation
- Foot position
- Angular speed parameter
544. Motion Correction
Right foot
RHS
RTS
RHO
RTO
554. Motion Correction
- Footplant detection
- Threshold Men04, Lee02
- Foot position and speed
- Dependent on motion parameters
564. Motion Correction
- Footplant detection
- Threshold Men04, Lee02
- Foot position and speed
- Dependent on motion parameters
- Our approach only one threshold (position)
- Rough approximation begin/end frame
574. Motion Correction
584. Motion Correction
- Footplant detection
- Threshold Men04, Lee02
- Foot position and speed
- Dependent on motion parameters
- Our approach only one threshold (position)
- Rough approximation begin/end frame
- Adaptive position threshold
594. Motion Correction
604. Motion Correction
614. Motion Correction
624. Motion Correction
634. Motion Correction
644. Motion Correction
- Footplant detection
- Threshold Men04, Lee02
- Foot position and speed
- Dependent on motion parameters
- Our approach only one threshold (position)
- Rough approximation begin/end frame
- Adaptive position threshold
- On-line Anticipation
654. Motion Correction
664. Motion Correction
- Footplant enforcement
- Analytic IK Kovar02, Park02
674. Motion Correction
- Footplant enforcement
- Analytic IK Kovar02, Park02
- Numerical IK with priorities Baerlocher04,
Callennec04 - 1 Ankle
- 2 Toe
684. Motion Correction
- Footplant enforcement
- Analytic IK Kovar02, Park02
- Numerical IK with priorities Baerlocher04,
Callennec04 - 1 Ankle
- 2 Toe
- Anticipation forease-in phase
694. Motion Correction
- Footplant enforcement
- Yellowcurrent posture
- Greenanticipated posture with IK
pos
E0(t)
E0(t1)
time
t0
t1
704. Motion Correction
- Footplant enforcement
- Yellowcurrent posture
- Greenanticipated posture with IK
pos
E0(t)
E0(t1)
Ec
time
t0
t1
714. Motion Correction
- Footplant enforcement
- Yellowcurrent posture
- Greenanticipated posture with IK
pos
E0(t)
E0(t1)
E (t)
Ec
time
t0
t1
724. Motion Correction
734. Motion Correction
- Results
- Smooth correction
- Straight curved motion
744. Motion Correction
- Results
- Smooth correction
- Straight curved motion
- Limitations
- IK per frame
- Only for slight corrections
75Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
765. Adaptive Motion Control
775. Adaptive Motion Control
- Automatic on-line motion transition
- Locomotion / Jump
Parameterized jump
Parameterized locomotion
Walk / Run
Jump
785. Adaptive Motion Control
- Automatic on-line motion transition
- Locomotion / Jump
- Time and duration identical footplant
RTO
RHS
Walk / Run
Jump
LTO
LHS
795. Adaptive Motion Control
jump
loco
loco
805. Adaptive Motion Control
- Automatic on-line motion transition
- Locomotion / Jump
- Time and duration identical footplant
- Dynamic coherence type, run-up speed
815. Adaptive Motion Control
- Motion capture observation (gt200 jumps)
825. Adaptive Motion Control
- Motion capture observation (gt200 jumps)
835. Adaptive Motion Control
- Automatic on-line motion transition
- Locomotion / Jump
- Time and duration identical footplant
- Dynamic coherence type, run-up speed
845. Adaptive Motion Control
- Speed variation
- Linear variable distance during adaptation
adaptation
855. Adaptive Motion Control
- Speed variation
- Linear variable distance during adaptation
- Other model ensure in on-line correct take-off
foot position
865. Adaptive Motion Control
- Approach
- Quadratic speed profile
- Duration
875. Adaptive Motion Control
- Approach
- Quadratic speed profile
- Duration
- Parameters
- Current speed
- Final speed
- Distance
- Current phase
- Final phase
885. Adaptive Motion Control
Jump over ?
895. Adaptive Motion Control
Jump over ?
Speed profile
Loco Jump
905. Adaptive Motion Control
915. Adaptive Motion Control
Jump over ?
Speed profile
Way points
Loco Jump
Loco
925. Adaptive Motion Control
935. Adaptive Motion Control
945. Adaptive Motion Control
955. Adaptive Motion Control
- Results
- Transition locomotion jump
- Real-time
- Flexibility
- Limitations
- Obstacle as box in front
- Quadratic model
96Contents
- Introduction
- Related Work
- Motion Modeling
- Motion Correction
- Adaptive Motion Control
- Conclusion
976. Conclusion
- Goals
- On-line and versatile animation model
- Environment
986. Conclusion
- Goals
- On-line and versatile animation model
- Environment
- Choices
- Motion capture data
- PCA
- IK for footplants
996. Conclusion
- Summary of contributions
- Motion parameterization
- Footplant detection and enforcement
- Coherent motion transition
- Dynamic obstacle handling
- Integration and applications
1006. Conclusion
- Perspectives
- Applications
- Video game (autonomous character)
- Urban traffic simulation (crowd)
- Orthopaedics
1016. Conclusion
- Perspectives
- Applications
- Video game (autonomous character)
- Urban traffic simulation (crowd)
- Orthopaedics
- Extensions
- Locomotion personification
- Physical validation
- Jump variety
102 103- IK formulation
- f non-linear
- Second priorityprojected null-space
104- Rodrigues Formula
- Skew-symmetric matrix B
105- Quaternion and axis-angle
106 107- Linear interpolation of quaternions
108RTO p 1
RHS p 0
109f
110Approximation onsynthesized data
Approximation onsynthesized data
Original Data