gray Burst Physics - PowerPoint PPT Presentation

1 / 48
About This Presentation
Title:

gray Burst Physics

Description:

[Taylor et al. 04] Dynamics 101b. 2qj. G(R) 1/qj. Rj 'Ignorant' jet/observer ... SWIFT Afterglows. II. Challenges. Collisionless shock physics (ee, eB ... – PowerPoint PPT presentation

Number of Views:59
Avg rating:3.0/5.0
Slides: 49
Provided by: eliwa
Category:
Tags: burst | gray | physics | swift | taylor

less

Transcript and Presenter's Notes

Title: gray Burst Physics


1
g-ray Burst Physics
E. Waxman Weizmann Inst. Israel
2
Bibliography
  • A pedagogical discussion of the topics covered in
    the 1st lecture- general considerations
    fireball dynamics- is given in section 2 of
  • Waxman 2003, Lec. Notes Phys. 598, 393
    astro-ph/0303517.
  • The topics covered in the 2nd lecture- afterglow,
    progenitor clues current challenges- are
    presented in slides 9-37.
  • Implications of afterglows discovered
    in the BeppoSax era are summarized in sections
    4 5 of Waxman 2003, Lec. Notes Phys. 598, 393
    astro-ph/0303517. For an update including
    implications of afterglows in the SWIF era see
  • Meszaros 2006, Rep. Prog. Phys. 69,
    2259.
  • A pedagogical review of the open
    questions related to the physics of relativistic
    collisionless shocks is given in
  • Waxman 2006, PPCF 48B, 137
    astro-ph/0607353.
  • A pedagogical discussion of the topics covered in
    the 3rd lecture- production of high energy
    protons and neutrinos in GRBs- is given in
    sections 4 5 of
  • Waxman 2001, Lec. Notes Phys. 576, 122
    astro-ph/0103186.
  • For a shorter discussion, updated to
    include implications of the most recent GRB and
    cosmic-ray observations, see
  • Waxman 2006, AIPC 836, 589
    astro-ph/0703434.

3
A brief introduction
4
Early History
  • Few secs bursts of
  • MeV photons
  • Discovery
  • 1967 by VELA satellites
  • (publication 1973)
  • 1991 BATSE
  • 1 GRB/day

5
BATSE phenomenology
Fishman Meegan 95
  • T0.01 to 100 s
  • Short T0.2 s, Long T20 s
  • Variability Dt1 ms
  • Non-thermal spectrum
  • 1-- 100 MeV
  • Most E _at_ e1MeV
  • Isotropic sky distribution
  • Cosmological origin
  • d1028.5 cm ? Eg(z1)1053 erg

Winkler et al. 95
6
The fireball model
R(M/Msun) cm T10s Dt t(gg-ee-)1014 100
MeV gs Dv(Dt)c/2G2
Gravitational collapse of (few) solar mass to
BH T disk viscous time Relativistic
outflow G100 (c-vc/2G2) Internal shocks
at RG2cDt1012cm e- acceleration in
Collisionless shocks Synchrotron/IC emission of
gs
Paczynski 86 Goodman 86
Narayan, Paczynski, Piran 92 Meszaros Rees
94
7
Progenitors
Collapse of a massive star
(Collapsar)
  • Progenitor
  • Merger of a compact binary (NS-NS, NS-BH)

Goodman 86 Paczynski 86
Woosley 93 Paczynski 98
8
Prediction Afterglow
M on 1 Solar Mass BH 107cm
e- acceleration in Collisionless shocks
1012cm
G300
Collision with surrounding gas 1016cm
MeV gs Lg1052erg/s
e- Synchrotron/IC
X-ray, UV Radio
Paczynski Rhoads 93 Katz 94 Meszaros Rees
97 Vietri 97 Waxman 97 Sari, Piran Narayan
98
9
1997 BeppoSAX
  • Arc-min localization for long bursts
  • in 10hrs
  • 1 / Month
  • Detection of (predicted) X-ray,
  • Optical Radio afterglow
  • Identification of host galaxies
  • Determination of redshift
  • 2

Metzger et al. 97
10
Afterglow I. Dynamics
11
Relativistic Point explosion
E
G(R)
G
n
q
q
1/G
p
R
D
  • gp,thermalG
  • trfR/Gc
  • DrfR/G
  • EG2M(R,n)c2
  • tR/c
  • DR/G2
  • tobsR/G2c, DtobsD/cR/G2c

Dtobsq2R/cR/G2c
12
Dynamics 101a
E
G(R)
n
q
q
1/G
R
Blandford McKee 76
Waxman 97
13
A comment on winds
  • ISM
  • Wind

14
Direct size measurement I. Scintillation
q
q d l
d
l
h
dne
Diffractive scintillation
  • Finite size, cosmological source hcrit.few x
    1017cm

Frail, Waxman Kulkarni 00
15
II. Resolved source
Taylor et al. 04
  • GRB 030329, 24 days after the burst (z0.17)
  • VLBABonn at 22 GHz
  • Marginally resolved at 0.08 milliarcsec
  • Superluminal expansion _at_ 5c

0.45 x 0.18 mas
16
Dynamics 101b
  • Ignorant jet/observer

G(R)1/qj
tcomovingR/Gc, DcomovingR/G 1/qj
  • G(R)1/qj Sideways expansion

2qj
Rj
Rhoads 97, 99
17
Jet breaks
Staneck et al. 99 Harrison et al. 99
18
Standard g-ray energy!
  • Total energy?

Frail et al. 01
19
Afterglow II. Radiation
20
Collisionless shocks
G
(nGn)
p
Relativistic shock
p
Ds
21
A phenomenological model
  • Collisionless B generation, non-thermal
    particles
  • ? synchrotron emission
  • Open questions
  • 1. B generation
  • 2. Non-thermal e-

22
Synchrotron emission
  • Model parameters E,n, ee, eB (,q)
  • Characteristic freq.
  • Peak flux

23
Synchrotron emission
  • Cooling freq.
  • Self-absorption

fm, nm, nc, na E,n, ee, eB,q
24
Observations Synchrotron spectrum
Wijers Galama 98
  • Model parameters
  • E,n,p,ee,eB
  • Qualitative agreement
  • f(t,n)A ta(p) nb(p)
  • Observables
  • fm, nm, nc, na
  • Typical values
  • E1052erg, n1/cm3, p2.2-0.1, eeeB0.1
  • Not too many examples!

Waxman 97 Freedman Waxman 01
25
The challenges I. B
  • UB,up10-9 nmpc2
  • eB0.1 ? UB,down/ UB,up 108
  • EM instabilities (ala Weibel) may give eB0.1
  • with lB c/wp
  • But DR/G Gct 1017cm c/wp107cm
  • Avoid field dissipation
  • ? lB lsd _at_ downstream!

Gruzinov Waxman 99 Medvedev Loeb 99
Gruzinov Waxman 99 Gruzinov 01
26
Challenges II. Particle acceleration
  • e- coupling (ee0.1 )
  • dne/dgege-2
  • p acceleration to UHE?

27
Fireball calorimetry
28
Non-relativistic transition
  • Shock becomes sub-rel. at
  • At later time

29
Synchrotron emission at NR transition
  • ISM
  • Wind
  • Non. Rel. spherical (SS-SNT)

E,n, ee, eB
30
Fireball calorimetry
  • Sub-relativistic _at_ 1yr,
  • Isotropic radio emission.
  • Long term radio observations
  • Determine total fireball E

Frail, Waxman Kulkarni 00 Livio Waxman
01 Granot Loeb 03
31
GRB 970508
Berger et al. 04
32
Calorimetry Implications
  • Explosion energy
  • E1051-0.5 erg
  • Radius R1017.5 cm
  • Consistent with relativistic phase evolution
    (E,R,qj)
  • Eg10 E ?
  • Standard E ?

Frail, Waxman Kulkarni 00 Berger et al. 04
33
Current StatusPost SWIFT Open Questions
34
SWIFT Afterglows
  • (100 long, 10 short) / yr
  • Rapid- 1 min- follow up
  • I. Short GRBs
  • 12 Short GRBs, 9 X-ray AG, 6 optical AG
  • 0.3 ? 30 times fainter than long GRBs
  • 0.2s g-rays followed by 100s softer emission
  • Faint afterglows ?
  • weak constraints on parameters (n, q, )

35
SWIFT Afterglows
  • II. Challenges
  • Collisionless shock physics (ee, eB )
  • Missing X-ray afterglow _at_ 10min10hr
  • No jet breaks??
  • X-ray flares
  • Long- dt/t
    103s?
  • Short- (050709) 1045erg, dt1hr _at_ t16day

36
Back to the engine
Collapse of a massive star
(Collapsar)
  • Progenitor
  • Merger of a compact binary (NS-NS, NS-BH)

Goodman 86 Paczynski 86
Woosley 93 Paczynski 98
37
Progenitor clues Long GRBs
  • Long GRBs in star-forming regions,
  • Brightest regions of host galaxies
  • ? Young population? massive stars (?)
  • 4 GRBs associated with SN-Ic
  • ? All long GRBs are from SN-Ics (?)
  • Difficulties
  • All 4 at low z (
  • for 3 of 4- Eiso
  • 060505 (z0.089) 060614 (z0.125) No SN

38
Progenitor clues Short GRBs
  • 3 in elliptical galaxies 2 in star-forming
  • ? Old population? mergers?
  • Lower E lower E available in mergers?

39
GRBs as Particle accelerators
40
The acceleration challenge
v
R
/G
B
v
2R
G2
G2
l R/G
(dtRFR/Gc)
Waxman 04
41
The suspects
  • Active Galactic Nuclei (steady)
  • G few requires L1047 erg/s
  • Few, brightest AGN
  • Gamma Ray Bursts (transient)
  • G 300 requires L1051 erg/s
  • Average Lg1052 erg/s

42
Proton/electron acceleration
  • Protons
  • Acceleration/expansion
  • Synchrotron losses
  • Particle spectrum
  • p energy production
  • Electrons
  • MeV gs
  • Optical depth
  • g spectrum
  • g energy production

Afterglow
0.02
52
Waxman 95
Waxman 04
43
Flux Spectrum Model
1019eV
  • Galactic heavy nuclei X-Galactic
    protons
  • X-Galactic protons
  • Generation spectrum
  • rate (z evolution follows SFR)
  • Flys Eye fit JGE-3.50

Watson 91, Nagano Watson 00
Waxman 95 Bahcall Waxman 03
44
Flux Spectrum Model vs. Data
X-G Model
Ruled out 7s
5s
Bahcall Waxman 03
45
Data/Model consistency
  • Yakutsk, Flys Eye, HiRes Consistent with
  • XG protons
    GZK
  • AGASA (25 of total exposure)
  • Consistent below 1020eV
  • Excess above 1020eV 2.2/-0.8 8
    observed
  • New source/New physics/ 25 energy
  • Local inhomogeneity
    over-estimate
  • Need Large, hybrid 1018eV to 1020eV detector
    (Auger)

?
46
GZK sphere
  • AGN, Radio-galaxies ?
  • GRBs ?
  • For RGRB(z0)0.5/Gpc3yr
  • Prediction

g
p
D
lB
Waxman 95 Miralda-Escude Waxman 96, Waxman 03
47
GRB Model Predictions
  • 3x1020eV
  • Few, narrow spectrum sources
  • Fluctuations (no homogeneous GZK).
  • Auger
  • AGASA multiplets-
  • statistical significance?

Watson 91, Cronin 93
Miralda-Escude Waxman 96
Teshima 03 Finley Westerhoff 04
48
Generic GRB ns
  • Weak dependence on model parameters

Waxman Bahcall 97, 99 Guetta, Spada Waxman
01
Write a Comment
User Comments (0)
About PowerShow.com