Title: gray Burst Physics
1g-ray Burst Physics
E. Waxman Weizmann Inst. Israel
2Bibliography
- A pedagogical discussion of the topics covered in
the 1st lecture- general considerations
fireball dynamics- is given in section 2 of - Waxman 2003, Lec. Notes Phys. 598, 393
astro-ph/0303517. - The topics covered in the 2nd lecture- afterglow,
progenitor clues current challenges- are
presented in slides 9-37. - Implications of afterglows discovered
in the BeppoSax era are summarized in sections
4 5 of Waxman 2003, Lec. Notes Phys. 598, 393
astro-ph/0303517. For an update including
implications of afterglows in the SWIF era see
- Meszaros 2006, Rep. Prog. Phys. 69,
2259. - A pedagogical review of the open
questions related to the physics of relativistic
collisionless shocks is given in - Waxman 2006, PPCF 48B, 137
astro-ph/0607353. - A pedagogical discussion of the topics covered in
the 3rd lecture- production of high energy
protons and neutrinos in GRBs- is given in
sections 4 5 of - Waxman 2001, Lec. Notes Phys. 576, 122
astro-ph/0103186. - For a shorter discussion, updated to
include implications of the most recent GRB and
cosmic-ray observations, see - Waxman 2006, AIPC 836, 589
astro-ph/0703434.
3A brief introduction
4Early History
- Few secs bursts of
- MeV photons
- Discovery
- 1967 by VELA satellites
- (publication 1973)
- 1991 BATSE
- 1 GRB/day
5BATSE phenomenology
Fishman Meegan 95
- T0.01 to 100 s
- Short T0.2 s, Long T20 s
- Variability Dt1 ms
- Non-thermal spectrum
- 1-- 100 MeV
- Most E _at_ e1MeV
- Isotropic sky distribution
- Cosmological origin
- d1028.5 cm ? Eg(z1)1053 erg
Winkler et al. 95
6The fireball model
R(M/Msun) cm T10s Dt t(gg-ee-)1014 100
MeV gs Dv(Dt)c/2G2
Gravitational collapse of (few) solar mass to
BH T disk viscous time Relativistic
outflow G100 (c-vc/2G2) Internal shocks
at RG2cDt1012cm e- acceleration in
Collisionless shocks Synchrotron/IC emission of
gs
Paczynski 86 Goodman 86
Narayan, Paczynski, Piran 92 Meszaros Rees
94
7 Progenitors
Collapse of a massive star
(Collapsar)
- Progenitor
- Merger of a compact binary (NS-NS, NS-BH)
Goodman 86 Paczynski 86
Woosley 93 Paczynski 98
8Prediction Afterglow
M on 1 Solar Mass BH 107cm
e- acceleration in Collisionless shocks
1012cm
G300
Collision with surrounding gas 1016cm
MeV gs Lg1052erg/s
e- Synchrotron/IC
X-ray, UV Radio
Paczynski Rhoads 93 Katz 94 Meszaros Rees
97 Vietri 97 Waxman 97 Sari, Piran Narayan
98
91997 BeppoSAX
- Arc-min localization for long bursts
- in 10hrs
- 1 / Month
- Detection of (predicted) X-ray,
- Optical Radio afterglow
- Identification of host galaxies
- Determination of redshift
- 2
Metzger et al. 97
10Afterglow I. Dynamics
11Relativistic Point explosion
E
G(R)
G
n
q
q
1/G
p
R
D
- gp,thermalG
- trfR/Gc
- DrfR/G
- EG2M(R,n)c2
- tR/c
- DR/G2
- tobsR/G2c, DtobsD/cR/G2c
Dtobsq2R/cR/G2c
12Dynamics 101a
E
G(R)
n
q
q
1/G
R
Blandford McKee 76
Waxman 97
13A comment on winds
14Direct size measurement I. Scintillation
q
q d l
d
l
h
dne
Diffractive scintillation
- Finite size, cosmological source hcrit.few x
1017cm
Frail, Waxman Kulkarni 00
15II. Resolved source
Taylor et al. 04
- GRB 030329, 24 days after the burst (z0.17)
- VLBABonn at 22 GHz
- Marginally resolved at 0.08 milliarcsec
- Superluminal expansion _at_ 5c
0.45 x 0.18 mas
16Dynamics 101b
G(R)1/qj
tcomovingR/Gc, DcomovingR/G 1/qj
- G(R)1/qj Sideways expansion
2qj
Rj
Rhoads 97, 99
17Jet breaks
Staneck et al. 99 Harrison et al. 99
18Standard g-ray energy!
Frail et al. 01
19Afterglow II. Radiation
20Collisionless shocks
G
(nGn)
p
Relativistic shock
p
Ds
21A phenomenological model
- Collisionless B generation, non-thermal
particles - ? synchrotron emission
- Open questions
- 1. B generation
- 2. Non-thermal e-
22Synchrotron emission
- Model parameters E,n, ee, eB (,q)
- Characteristic freq.
- Peak flux
23Synchrotron emission
- Cooling freq.
- Self-absorption
fm, nm, nc, na E,n, ee, eB,q
24Observations Synchrotron spectrum
Wijers Galama 98
- Model parameters
- E,n,p,ee,eB
- Qualitative agreement
- f(t,n)A ta(p) nb(p)
- Observables
- fm, nm, nc, na
- Typical values
- E1052erg, n1/cm3, p2.2-0.1, eeeB0.1
- Not too many examples!
Waxman 97 Freedman Waxman 01
25The challenges I. B
- UB,up10-9 nmpc2
- eB0.1 ? UB,down/ UB,up 108
-
- EM instabilities (ala Weibel) may give eB0.1
- with lB c/wp
-
- But DR/G Gct 1017cm c/wp107cm
- Avoid field dissipation
- ? lB lsd _at_ downstream!
Gruzinov Waxman 99 Medvedev Loeb 99
Gruzinov Waxman 99 Gruzinov 01
26Challenges II. Particle acceleration
- e- coupling (ee0.1 )
-
- dne/dgege-2
- p acceleration to UHE?
27Fireball calorimetry
28Non-relativistic transition
- Shock becomes sub-rel. at
- At later time
29Synchrotron emission at NR transition
- Non. Rel. spherical (SS-SNT)
E,n, ee, eB
30Fireball calorimetry
- Sub-relativistic _at_ 1yr,
- Isotropic radio emission.
- Long term radio observations
- Determine total fireball E
Frail, Waxman Kulkarni 00 Livio Waxman
01 Granot Loeb 03
31GRB 970508
Berger et al. 04
32Calorimetry Implications
- Explosion energy
- E1051-0.5 erg
- Radius R1017.5 cm
- Consistent with relativistic phase evolution
(E,R,qj) - Eg10 E ?
- Standard E ?
-
Frail, Waxman Kulkarni 00 Berger et al. 04
33Current StatusPost SWIFT Open Questions
34SWIFT Afterglows
- (100 long, 10 short) / yr
- Rapid- 1 min- follow up
- I. Short GRBs
- 12 Short GRBs, 9 X-ray AG, 6 optical AG
- 0.3 ? 30 times fainter than long GRBs
- 0.2s g-rays followed by 100s softer emission
- Faint afterglows ?
- weak constraints on parameters (n, q, )
35SWIFT Afterglows
- II. Challenges
- Collisionless shock physics (ee, eB )
- Missing X-ray afterglow _at_ 10min10hr
- No jet breaks??
- X-ray flares
- Long- dt/t
103s? - Short- (050709) 1045erg, dt1hr _at_ t16day
36Back to the engine
Collapse of a massive star
(Collapsar)
- Progenitor
- Merger of a compact binary (NS-NS, NS-BH)
Goodman 86 Paczynski 86
Woosley 93 Paczynski 98
37Progenitor clues Long GRBs
- Long GRBs in star-forming regions,
- Brightest regions of host galaxies
- ? Young population? massive stars (?)
- 4 GRBs associated with SN-Ic
- ? All long GRBs are from SN-Ics (?)
- Difficulties
- All 4 at low z (
- for 3 of 4- Eiso
- 060505 (z0.089) 060614 (z0.125) No SN
-
38Progenitor clues Short GRBs
- 3 in elliptical galaxies 2 in star-forming
- ? Old population? mergers?
- Lower E lower E available in mergers?
-
39GRBs as Particle accelerators
40The acceleration challenge
v
R
/G
B
v
2R
G2
G2
l R/G
(dtRFR/Gc)
Waxman 04
41The suspects
- Active Galactic Nuclei (steady)
- G few requires L1047 erg/s
- Few, brightest AGN
- Gamma Ray Bursts (transient)
- G 300 requires L1051 erg/s
- Average Lg1052 erg/s
42Proton/electron acceleration
- Protons
- Acceleration/expansion
- Synchrotron losses
- Particle spectrum
- p energy production
- Electrons
- MeV gs
- Optical depth
-
- g spectrum
- g energy production
Afterglow
0.02
52
Waxman 95
Waxman 04
43Flux Spectrum Model
1019eV
- Galactic heavy nuclei X-Galactic
protons - X-Galactic protons
- Generation spectrum
- rate (z evolution follows SFR)
-
- Flys Eye fit JGE-3.50
Watson 91, Nagano Watson 00
Waxman 95 Bahcall Waxman 03
44Flux Spectrum Model vs. Data
X-G Model
Ruled out 7s
5s
Bahcall Waxman 03
45Data/Model consistency
- Yakutsk, Flys Eye, HiRes Consistent with
- XG protons
GZK - AGASA (25 of total exposure)
- Consistent below 1020eV
- Excess above 1020eV 2.2/-0.8 8
observed - New source/New physics/ 25 energy
- Local inhomogeneity
over-estimate - Need Large, hybrid 1018eV to 1020eV detector
(Auger)
?
46GZK sphere
- AGN, Radio-galaxies ?
- GRBs ?
- For RGRB(z0)0.5/Gpc3yr
- Prediction
g
p
D
lB
Waxman 95 Miralda-Escude Waxman 96, Waxman 03
47GRB Model Predictions
- 3x1020eV
- Few, narrow spectrum sources
- Fluctuations (no homogeneous GZK).
- Auger
- AGASA multiplets-
- statistical significance?
Watson 91, Cronin 93
Miralda-Escude Waxman 96
Teshima 03 Finley Westerhoff 04
48Generic GRB ns
-
-
-
- Weak dependence on model parameters
Waxman Bahcall 97, 99 Guetta, Spada Waxman
01