Basics of mechanical properties of metals - PowerPoint PPT Presentation

1 / 25
About This Presentation
Title:

Basics of mechanical properties of metals

Description:

Swift's law. e. s. e. s. e. s -e0. ln e. ln s. n. 1. K. sy. Necking. strain localisation at maximum load ... Sachs and Taylor. poor correlation with experiment ... – PowerPoint PPT presentation

Number of Views:1271
Avg rating:3.0/5.0
Slides: 26
Provided by: jeanphilip
Category:

less

Transcript and Presenter's Notes

Title: Basics of mechanical properties of metals


1
Basics of mechanical properties of metals
  • Jean-Philippe Chateau
  • Ecole des Mines de Nancy
  • Institut Jean Lamour

2
Lectures
  • Lattice deformation
  • Macroscopic behaviour
  • 1) Tensile test
  • 2) Polycrystal
  • 3) Alternative deformation mechanisms
  • Effect of temperature and strain rate
  • Failiure

3
Macroscopic behaviour1) Tensile test
4
Engineering stress-strain curve
  • measure the force (simple)
  • measure the elongation (not so easy)

Fe-22Mn-0.6C at 400C
applied force (N)
engineering stress s (MPa)
fracture
S0 4.4 mm2 L0 24.3 mm
elongation DL (mm)
engineering strain e ()
5
Mechanical characteristics
  • stiffness
  • Youngs modulus E
  • resistance
  • yield stress sy, R0.2
  • ultimate tensile strength su Fmax/S0
  • ductility
  • elongation to fracture eF
  • area reduction q
  • SF measured in the fractured zone

6
Typical behaviours
  • metals

annealed copper
annealed mild steel
  • ceramics, glass
  • elastomers, polymers

elastic
elastic
rubber
polypropylene
7
Compared mechanical characteristics
  • eF ? when sy, su ?
  • metals
  • best compromise

8
True stress-strain curve
  • true stress
  • plastic deformation occurs by glide
  • no volume change
  • true strain
  • the actual gauge length L increases
  • Uniform strain eu
  • strain at maximum load (N)
  • Fracture strain
  • stress strain law s f(e)
  • to be used in FEM simulations
  • and not s f(e) !

9
Empirical laws
  • Hollomons law
  • strain hardening coefficient
  • Ludwiks law
  • Swifts law

sy
10
Necking
  • strain localisation at maximum load
  • at Fmax
  • volume conservation
  • Considères criterion
  • q s stress increase due to hardening higher
    than stress increase due to local section
    reduction
  • q

or
11
Strain localisation
Localised or diffuse necking
  • Fe-22Mn-0.6C
  • at different temperatures
  • grain size 2.5 µm
  • high elongation due to high
  • hardening rate
  • Annealed Mild steel
  • dislocations pinned by carbon atoms
  • immediate softening at yield point
  • Lüders bands

strain hardening rate n
line n e
true strain
12
Macroscopic behaviour 2) Polycristal
13
Microscopic vs macroscopic yield stress
  • microscopic yield stress
  • deformation of grains with the maximum resolved
    shear stress
  • ? 1 slip sytem / m 0.5
  • dislocations are blocked at the grain boundaries
  • small deformation
  • not measurable by the tensile test
  • macroscopic stress
  • deformation extends to all the grains
  • sy measured by the tensile test

14
Relation between sy and tc ?
  • Sachs formulation
  • no texture random orientation of grains
  • deformation mainly achieved by the primary system
    in each grain
  • average Schmid factor on primary systems
  • Von Mises condition
  • ep 6 components (symmetrical)
  • constant volume Tr(ep) 0
  • 5 degrees of freedom 5 slip systems
  • Taylor formulation
  • energetic criterion to select the 5 slip systems

f.c.c. metals
15
Influence of the grain boundaries
  • Sachs and Taylor
  • poor correlation with experiment
  • pure polycristalline Cu sy tens of MPa tc 1 MPa
  • polycrystals do not behave like
  • a group of isolated crystals
  • strain incompatibilities at
  • the grain boundaries
  • Hall Petch law A

predeformed pure Cu
A MSachs tc
16
Macroscopic behaviour 3) Alternative
deformation mechanisms
17
Intergranular glide
tg
  • Grain boundaries have their own resistance
  • sIG 2 tg
  • Intragranular deformation
  • If sIG
  • deformation is achieved by grain boundary gliding
  • Limit of the Hall Petch law
  • HP not valid for small grain sizes (µm)
  • superplastic behaviour (eu 1)

18
Mechanical twinning
  • Twin
  • crystal with a symmetry relation with the host
    lattice
  • f.c.c.
  • achieved by glide of Shockley partial
    dislocations on parallel 111 planes
  • twinning systems 111
  • b.c.c.
  • twin plane 112
  • twin direction

19
Mechanical twinning
  • twins produce a permanent glide
  • f.c.c., b.c.c.
  • h.c.p.
  • participates to plastic deformation
  • h.c.p.
  • Von Mises condition 5 slip systems required to
    achieve a given deformation
  • Zn, Sn mainly basal glide 3 slip systems, only
    1 plane
  • f.c.c.
  • low stacking fault energy
  • dislocations largely dissociated
  • Shockley partials can move individually to
    achieve the glide
  • b.c.c.
  • dislocation glide is difficult
  • at low temperature

20
TWIP effect
400ºC, SFE 90 mJ/m2
  • Twinning Induced Palsticity
  • Fe-22Mn-0.6C
  • metastable f.c.c. structure
  • low stacking fault energy increasing with T
  • increasing volume fraction of mocrotwins along
    with deformation

25ºC, SFE 20 mJ/m2
disloca-tions twins
thermochemical model of the SFE
disloca-tions
21
TWIP effect
  • twin boundaries are strong obstacles
  • twin boundary grain boundary
  • decrease of the mean free path of the
  • dislocations
  • dynamical Hall Petch effect
  • very high hardening rate
  • elongation 50 UTS 1 GPa

1600
Emboutis à chaud
1400
Multiphasés
1200
1000
tensile strength (MPa)
TWIP
TRIP
800
Dual Phase
600
Rephosphoré, BH
400
HSLA
Extra-Doux
200
0
0
10
20
30
40
50
60
elongation ()
22
TRIP effect
-196ºC, SFE 7 mJ/m2
  • Tansformation Induced Palsticity
  • Fe-22Mn-0.6C
  • metastable f.c.c. structure
  • e-martensite (h.c.p.) more stable at low
    temperature
  • achieved by glide of Shockley partials
  • every 2 111 planes
  • same effect as TWIP effect

23
Shape memory and pseudo elasticity
  • phase transformation
  • cooling austenite ? martensite between MS and
    MF
  • heating martensite ? austenite between AS and
    AF
  • MF
  • hysteresis due to the creation of heterophase
    interfaces
  • displacive transformation
  • the transformation temperatures increase with the
    applied stress
  • Ni-Ti
  • Cu-Al-Ni
  • Cu-Al-Zn
  • Fe-Mn-Si-C

shape memory
pseudo elasticity
reversible strain up to 10
24
  • Plastic deformation
  • thermally activated mechanisms
  • Part III influence of the loading conditions
  • temperature
  • strain rate

25
(No Transcript)
Write a Comment
User Comments (0)
About PowerShow.com