Title: How ocean CO2 fluxes are estimatedmeasured
1How ocean CO2 fluxes are estimated/measured
Colm Sweeney csweeney_at_ldeo.columbia.edu Princet
on University and Lamont-Doherty Earth Observatory
2Outline
- Concept
- -Ocean carbon chemistry primer
- -The air-sea flux
- II. The air-sea flux measurement
- Covariance
- Gradient technique
- III. Surface measurements
- Measurements of surface pCO2
- Methods for interpolation
- IV. Improving our estimates of air-sea fluxes
- Time-space distribution of pCO2
- Parameterization of gas transfer velocity
3Ocean Carbon Chemistry Primer
CO2(gas)
CO2 H2O ?? H2CO3 H3CO2 ?? H HCO3- HCO3-
?? H CO32-
Carbonic acid
Bicarbonate
Carbonate
TCO2
CO2 CO32- ??2 HCO3-
4Ocean Carbon Chemistry Primer
CO2(gas)
280 matm
560 matm
CO2 H2O ?? H2CO3 H3CO2 ?? H HCO3- HCO3-
?? H CO32-
8 mmol kg-1
15 mmol kg-1
Carbonic acid
1617 mmol kg-1
1850 mmol kg-1
Bicarbonate
268 mmol kg-1
176 mmol kg-1
Carbonate
1893 mmol kg-1
2040 mmol kg-1
TCO2
CO2 CO32- ??2 HCO3-
100 DpCO2? 8 DTCO2
Taken from Feely et al. (2001)
5Concept
Keeling et al.
Eks(pCO2w)
River input 0.6 PgC yr-1 DpCO22 matm
Iks(pCO2a)
k f(u) Sc-n u frictional velocity s
solubility Sc schmit number (v/D) n
0.4 0.67 (high slopelow slope)
Net air-sea gas flux Fgasks(pCO2w-pCO2a)
6Bomb 14C
Semi-infinite Half space
Broecker and Peng (1994)
Transfer velocity kav 22 cm/hr u 7.4 m/s
7Early estimates air-sea CO2 exchange
n14N?14C
Natural 14CO2/12CO2 in gassing
Solve for I
14CO2/12CO2 out gassing
Decay 14C ? 14N e-
Pre-industrial assumption 14CO2 in 14CO2 out
Decay
0.061 mol m-2 yr-1 uatm-1 21.4 cm hr-1
8Early estimates air-sea CO2 exchange
n14N?14C
Natural 14CO2/12CO2 in gassing
Outgassing of Radon
Solve for I
Rn
14CO2/12CO2 out gassing
222Rn ? 218Po 4He
226Raaq ? 222Rngas 4He
Decay 14C ? 14N e-
Rnmixed layer lRn Rnno loss
lRn lgas exchange
Pre-industrial assumption 14CO2 in 14CO2 out
Decay
0.062 mol m-2 yr-1 uatm-1 21.9 cm hr-1
0.061 mol m-2 yr-1 uatm-1 21.4 cm hr-1
9Flux Measurements in the Atmosphere
10Direct covariance technique
11Covariance flux of H2O and CO2Fair-sealtc'w'gt
3-D Sonic Anemometers
H2O/CO2 samples
IR Detector (Sample)
Res
Pump
IR Detector (Motion Detection)
Std
12Gradient Flux Technique
Frictional velocity
McGillis et al. (2001)
Gradient Function -empirically determined based
on Monin Obukhov (MO) similarity theory
Measured Gradient (3-13m)
Covariance intake
13GasEx-98 Comparison-estimates of transfer
velocity
GasEx-2001
14Estimates of gas transfer velocity
Rayleigh Distribution For ocean wind speeds P(u)
Bomb 14C kav22 cm /hr
k- short term
15Estimates of CO2 fluxes from measurements of DpCO2
1. Shipboard measurements of atmospheric and
surface ocean pCO2
2. The ocean pCO2 climatology
3. Flux calculations using the climatology
16Shipboard measurements of atmospheric and surface
ocean pCO2
17Equilibration of air sample
Re-circulation
IR Detector
Air flow
Drain
18Takahashi pCO2 database
1,183,000 measurements - Since 1968
19Monthly distribution of pCO2
20The climatology
- Exclude all El-Nino years.
- dramatic change in annual fluxes have been
observed - El-Nino periods based on SIOlt-1.5 and SST changes.
- 2. Normalize pCO2 single reference year (1995)
- In warm waters (lat. lt45) DpCO2 remains constant
- 3. Interpolate data on to 4ox 5ox 365 day grid
- finite differencing algorithm is used with a 2-D
transport model from Toggwieler et al. (1989) to
propagate the influence of observed data at one
day time steps. Distribution is solved iteratively
pCO2
Time
21The pCO2 Climatology
22Global CO2 flux
23Test of interpolation
DpCO2
3.5
DT 0.28 C 0.8 PgC
24Sampling resolution
250K samples (Takahashi 97)
500K samples (Takahashi 99)
940K samples (Takahashi 02)
25Change in fluxes with increases in samples
PgC yr-1
26Gas Transfer Velocity and Fluxes
27Estimates using different gas exchange-wind speed
relationships
Feely et al., 2001
28Long vs. short term winds
PgC yr-1
41 Year average Monthly
NCEP(1995)
29Sources of uncertainty
- Seasonal distribution of pCO2 (0.8 PgC)
- Estimate of skin temperature (-0.6 to 0.1 PgC)
- Estimates of the transfer velocity (20-40)
- Estimates of windspeed (2 m/s)
30How can we do better?
31Factors influencing CO2 flux estimates
Wind
Wind Waves
Biology
Surface Film
k
DpCO2
SST
Bubbles
Near Surface Turbulence
Transport
Air-Sea CO2Flux
Bock et al. (1999)
32Better spatial-temporal coverage
1. Deployment of ships and moorings
2. Predictions using synoptic data sets
33Space and time coverage of ocean carbon observing
networks
time
centuries
Repeat Trans-basin Sections
decadal
Shipboard Time-Series
Inter-annual
Moored Time-Series
VOS surface pCO2
Remote sensing
seasonal
daily
Process Studies
hourly
space
Ocean Basin
1 m2
1 km2
Globe
Regional (106 km2)
34Factors influencing surface water pCO2
Variable Range Relation Effect
Temperature (C) -2 30 (?ln pCO2/?T)
0.0423oC-1 400
TCO2(mmol kg-1) 1900-2200 (?ln pCO2/?Tln TCO2)
10 400
Salinity(mmol kg-1) 33.5-37 (?ln pCO2/?Tln S)
0.94 10
Alkalinity(mmol kg-1) 2150-2350 (?ln pCO2/?Tln
TALK) -9.4 -200
Alkalinity and salinity are proportional and can
be accounted for
35Temperature correlations
Spring
Winter
Summer
Fall
Stephens et al., 1996
36Prediction of DpCO2
37Bermuda
100 uatm
4.23 C-1
9.5 C
160 uatm Due to temperature
Courtesy of Nick Bates
TCO233 mmol/kg
38Temp vs. Biology
Takahashi et al. (2002)
39CO2H2O ?? O2CH2O
Upwelling
Palmer Sta.
Temp. (C)
40MODIS
41Predicting pCO2
SST
NPP
Zmix
42Estimates of gas transfer velocity
Wind
Wind Waves
Surface Film
k
Bubbles
Near Surface Turbulence
43Gas exchange vs. rain rate (MP distribution)
Ho et al. 1997
44Summary
- I. The air-sea flux measurement
- Provide true short-term (1 hr) measurements of
flux which can be associated with wind speeds
measured on that same time scale. - Are limited to areas of high DpCO2
- II. Estimates using surface DpCO2
- Provide us with estimates of fluxes on a monthly
basis based climatology adjusted for a single
non-El Nino year - Errors in flux estimates occur due to lack of
direct pCO2, wind speed and understanding of the
gas transfer velocity
- III. Improving our estimates of air-sea fluxes
- Time-space distribution of pCO2
- Deployment of ships and buoys
- Use of satellite measurements to calculate
change in TCO2 - Parameterization of gas transfer velocity
- micro-scale measurements
45Inventory methods
- Estimates of integrated change in carbon
inventory - 1) Time series approach
- Comparing measurements made between two time
intervals - Compare residuals of multiple parameter
regressions using T, S, TALK and nutrients - 2) C Method
- Estimate of the total inventory of anthropogenic
carbon in any given region
46(No Transcript)
47Hydrographic samplisg stations
48(No Transcript)
49C Method (Gruber et al.)
DC
O2sat-O2 O2meas 0
Ceq280
pCO2(i)280
Cdiseq
170O2 116CO2
CaCO3
?Cbio
sT
Ca2CO32-
170 O2
16 NO32-
Soft tissue
Carbonate
?CbiorCODO2 ½(rNODO2DCO32-)
Cant Cm ?Cbio Ceq280 Cdiseq ?C -
?Cdiseq
50Anthropogenic CO2
(mmol kg-1)
51Pre-industrial CO2
(mmol kg-1)
52International CLIVAR/CO2 Lines (including US)
CO2 Clivar Repeat Hydro.